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Abstract

Tracking how individual human brains change over extended timescales is
crucial to clinical scenarios ranging from stroke recovery to healthy aging. The
use of resting state (RS) activity for tracking is a promising possibility.
However, it is unresolved how a person’s RS activity over time can be decoded
to distinguish neurophysiological changes from confounding cognitive
variability. Here, we develop a method to screen RS activity changes for these
confounding effects by formulating it as a problem of change classification.
We demonstrate a novel solution to change classification by linking
individual-specific change to inter-individual differences. Individual
RS-electroencephalography (EEG) was acquired over 5 consecutive days
including task states devised to simulate the effects of inter-day cognitive
variation. As inter-individual differences are shaped by neurophysiological
differences, the inter-individual differences in RS activity on 1 day were
analysed (using machine learning) to identify distinctive configurations in
each individual’s RS activity. Using this configuration as a decision rule, an
individual could be re-identified from 2-s samples of the instantaneous
oscillatory power spectrum acquired on a different day both from RS and
confounded RS with a limited loss in accuracy. Importantly, the low loss in
accuracy in cross-day versus same-day classification was achieved with
classifiers that combined information from multiple frequency bands at
channels across the scalp (with a concentration at characteristic fronto-central
and occipital zones). Taken together, these findings support the technical

feasibility of screening RS activity for confounding effects and the suitability of

Abbreviations: AIP — BIq, train decision rule on state A from day p (AIP); test on state B from day g (BIq); A1 p° AIq — B, train decision rule on
state A from days p and g (aggregation); test on state B from day r; Bs, By, B,, Bs1, B, mono-band feature sets for the delta (6); theta (8); alpha ();
low-beta (f,); and high-beta (4,) frequency bands; EEG, electroencephalography; Ly, Lgc, Lcp, Lpo, mono-location feature sets for the frontal; fronto-
central, centro-parietal and parieto-occipital zones; NP—, absence (negative instance) of inter-day neurophysiological change; NP+, presence
(positive instance) of inter-day neurophysiological change; RS, resting state; RS1, RS2, resting state Session 1, Session 2; *I,;, combined sample

distribution of individuals in state X from day d.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

Eur J Neurosci. 2022;56:3613-3644.

wileyonlinelibrary.com/journal/ejn | 3613


https://orcid.org/0000-0003-1972-0465
https://orcid.org/0000-0002-7513-3778
https://orcid.org/0000-0001-7342-1015
mailto:s.daun@fz-juelich.de
https://doi.org/10.1111/ejn.15673
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/ejn

| wiLEy DN

HOMMELSEN ET AL.

KEYWORDS

1 | INTRODUCTION

Tracking the changes to a person’s brain over extended
timescales (e.g., days to years) is crucial to understand
neural plasticity processes in numerous clinically relevant
scenarios, from stroke recovery (Bonkhoff et al., 2020;
Giaquinto et al., 1994; Grefkes & Fink, 2020; Rehme
et al., 2011; Saes et al., 2020; van der Vliet et al., 2020;
Wu et al., 2016) to healthy aging (Boersma et al., 2011;
Cabeza et al., 2018; Cassani et al., 2018). One promising
strategy for individualized tracking is with repeated mea-
surements of resting state (RS) activity: the ongoing neural
oscillatory dynamics over a few minutes of wakeful rest
(Carino-Escobar et al., 2019; Gordon et al., 2017
Guerra-Carrillo et al., 2014; Hohenfeld et al.,, 2018;
Laumann et al.,, 2015; Newbold et al.,, 2020; Pritschet
et al., 2020; Saes et al., 2020; Vecchio et al., 2013; Wu
et al., 2015). Despite being ‘task free’, the organization of
RS activity has revealed a close relationship to underlying
neurobiological organization and integrity (Biswal
et al.,, 1995; Buckner & DiNicola, 2019; Damoiseaux &
Greicius, 2009; Hermundstad et al., 2013; Hoenig
et al., 2018; MiSic et al., 2016; van den Heuvel et al., 2009).
The apparent informativeness of RS activity coupled with
its convenient and inexpensive acquisition (e.g., with elec-
troencephalography [EEG]) has suggested its suitability to
track a person’s changing neurophysiology. Nevertheless,
strategies to translate the information in a person’s multi-
day RS activity into inferences specific to that person’s
changing brain remain poorly understood.

For population inferences, each individual is a sample
from the population of interest and the focus is on
observed individual effects that generalize to the popula-
tion (e.g., is there a mean effect for group X?) (Gratton
et al., 2018; Poldrack, 2017). However, for an individual-
specific inference, the individual is both the source of
information and the target for the inference. For RS-
based tracking, this could entail the use of ~5-10 min of
RS activity acquired from a person on different days to
make a diagnostic classification about that person
(e.g., has person X undergone a neuroplastic change?).
Furthermore, this inference procedure might itself have
to be adapted to the person’s unique characteristics. This
narrowed scope of individualized inferences presents

longitudinal RS for robust individualized inferences about neurophysiological
change in health and disease.

electroencephalography (EEG), frequency analysis, individual differences, individual
identification, machine learning, multiclass classification, neural plasticity, power spectrum

challenging constraints and uncertainties without a sim-
ple equivalent in population inference methods. Towards
specifying and addressing these challenges, in the current
study, we investigate an inference problem posed by
multi-day RS tracking, namely, of classifying inter-day
activity changes.

1.1 | Individualized change
classification: Problem specification

Suppose a person’s RS activity is acquired on two differ-
ent days. In the period between these two measurements,
a person’s underlying neurophysiology organization
might have changed in a variety of possible ways. How-
ever, it is also possible that the person’s neurophysiology
remained relatively unchanged over this period. These
diverse possibilities can be simplified into two categories:
(i) change present (i.e., positive instances of neurophysio-
logical change of any kind, denoted as NP+), or
(i) change absent (i.e., negative instances, NP—). This
scenario now poses the diagnostic problem of change
classification (Figure 1a): How can a person’s RS activity
from Days 1 and 2 be used to decide whether that per-
son’s neurophysiological organization might have under-
gone a change of any kind (NP+) or not (NP—)?

One simple but erroneous criterion for change classi-
fication is the presence/absence of an inter-day difference
in RS activity. The diverse variety of possible neurophysi-
ological changes across the brain (i.e., NP+) could pro-
duce correspondingly diverse differences in inter-day RS
activity. However, the absence of neurophysiological
changes (NP—) does not imply the absence of inter-day
RS differences due to at least two sources of ‘nuisance’
variability.

Firstly, the repeated measurements on different days
can affect inter-day differences in RS activity due to
measurement-related factors, as demonstrated by numer-
ous studies of test-retest reliability (Bijsterbosch
et al., 2017; Brandmaier et al., 2018; Cox et al., 2018;
Noble et al., 2019; Postema et al., 2019). Such spurious
activity changes can lead to misclassifications of NP— as
NP+ and also NP+ as NP—. Secondly, ‘rest’ is an under-
constrained cognitive state that can introduce incidental,
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FIGURE 1 Change classification and person identification.

(a) Change classification: Use resting state (RS) activity samples of
person S from Day 1 (black wavy lines) and Day 2 (magenta lines)
to decide if S underwent a neurophysiological change between days
(NP+) or not (NP—). (b) Cross-day person identification: Train a
decision rule to identify S from RS activity samples of S and a
collection of others (not-S) from Day 1. Use decision rule to decide
whether samples from Day 2 are from S or not?

idiosyncratic variations in a person’s neural state
(e.g., Day 1: mind-wandering; Day 2: sleepiness; Day 3:
recalling emotional memories) (Benjamin et al., 2010;
Diaz et al., 2013; Duncan & Northoff, 2013; Gonzalez-
Castillo et al., 2021; Kawagoe et al., 2018). Such cryptic
differences in the cognitive state between days could pro-
duce differences in RS neural activity even when underly-
ing neurophysiology is unchanged. This can lead to false
positives (Type-I errors) where the absence of change
(NP-) is misclassified as a neuroplastic change (NP+).
Inter-day variability in cognitive states is a particular con-
cern because it is difficult to eliminate and involves true
neural activity differences that could confound classifica-
tion even if measurement-related variability were to be
low and highly controlled.

A desirable solution to change classification would be
a robust decision rule that enables accurate classification
despite the presence of measurement and cognitive state
variability between days. ‘Robustness’ is used here in the
sense of maintaining performance despite deviations and
uncertainties about model assumptions (e.g., Box &
Andersen, 1955; Huber, 1981; Xu & Mannor, 2012) and is
not used as a synonym for measurement reliability
(e.g., Brandmaier et al., 2018). In the current study, we
used multivariate pattern analysis (MVPA; Haynes, 2015;
Varoquaux et al., 2017) to investigate whether and how
such robust decision rules (classifiers) might be obtained.
A decision rule’s ability to generalize (Bishop, 2006), that
is, to classify information from a different setting than
the information used to train the decision rule, provided
a quantitative measure of robustness.

1.2 | Proposed approach: Change
classification formulated as cross-day
person identification

Identifying a robust decision rule with supervised
machine learning involves a critical constraint. For
multi-day RS-tracking, the equivalent of one ‘trial’ is the
change related to a single pair of RS measurements from
different days. Due to practical constraints of RS tracking,
only a single trial (i.e., one pair of RS measurements)
might be available from a person and the status of this
one trial (NP+/NP—) might be unknown and to be deter-
mined by classification. Therefore, training a classifier to
categorize inter-day differences as either NP+ or NP—
using a set of prior examples of these categories from that
person would be infeasible. To accommodate this severe
constraint, we propose a strategy to use the distinctiveness
of individual RS activity as an alternative source of infor-
mation for change classification.

Our proposed strategy is based on the observation
that RS change classification is qualitatively isomorphic
to the well-studied problem of RS-based person identifica-
tion. Numerous studies demonstrate that individual RS
activity is highly distinctive to the extent that a person
can be identified relative to others solely from their RS
activity (Campisi & Rocca, 2014; Finn et al., 2015; see,
e.g., Huang et al., 2012; Pani et al., 2020; Valizadeh
et al., 2019). In that framework, identification is a form of
population inference with a focus on multivariate rela-
tionships in a person’s RS activity that generalize to sam-
ples of the person’s own activity but not to the activity of
others. These distinctive characteristics are seemingly
like the person’s biometric signature (or ‘fingerprint’).
Crucially, to identify a person across different days, these
RS ‘fingerprints’ have to be robust to measurement-
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related and cognitive state variability (see below). There-
fore, we reasoned that procedures used for person identi-
fication could be relevant to robust change classification.

The qualitative similarities between change classifica-
tion and person identification are illustrated in Table 1
(also see Figure 1b). Each row of the table shows the
inter-sample relationship of interest, the associated
sources of inter-sample differences (measurement, cogni-
tive state, neurophysiological), and the idealized categori-
zation (right column). For idealized change classification
(Rows 1 and 2), only the presence/absence of inter-day
neurophysiological differences are of relevance to the
desired categorization (NP—/NP+), although the other
differences are ‘nuisance’ factors to be ignored. This is
also the case for idealized cross-day person identification
(Rows 3 and 4), where measurement and cognitive state
differences are irrelevant for accurate identification. Fur-
thermore, idealized classification of NP— (Row 1) and
person S (Row 3) has a similar structure.

For (non-robust) change classification based on sim-
ple activity differences, cognitive state differences could
lead to a misclassification of NP— (Row 1) as NP+. This
nuisance factor can also lead to a misidentification of per-
son S (Row 3) as being not-S. A misidentification could
also theoretically occur if the same person undergoes a
neurophysiological change across days (Row 3, absent™®).
This error would be equivalent to the classification of
NP+ (Row 2).

Based on this qualitative isomorphism (i.e., between
Rows 1-2 and 3-4), a question is whether a same-day clas-
sifier trained to identify a particular person (Rows 5 and

day identification and hence possibly change classifica-
tion. In prior studies of person identification, same-day
classification (Rows 5 and 6), involved samples of a per-
son’s RS activity that were obtained from the same RS
session of the same day. Thus, the inter-sample differ-
ences from the same person (Row 5) can be assumed to
have small measurement and cognitive differences, and
no neurophysiological differences. However, inter-sample
differences from different persons (Row 6) would be asso-
ciated with both measurement and cognitive state differ-
ences, as well as differences in the neurophysiological
phenotype. Consequently, a decision rule trained for
same-day person identification might not be robust for
cross-day person identification unless it represents infor-
mation about that person’s unique neurophysiology in
some manner.

We investigated the conditions required for robust
inter-day person identification using longitudinal resting
EEG activity acquired on 5 consecutive days from
healthy, young participants who were assumed to be neu-
rophysiologically stable over this period. A decision rule
to identify a person S was trained (using machine learn-
ing) to distinguish between (i) examples of RS activity
from S on a single day and (ii) examples of single day RS
activity from a diverse pool of other individuals (i.e., not-
S) (Figure 1b). Each example was a brief 2 s activity sam-
ple representing a dynamically variable neural state dur-
ing an RS session (Calhoun et al., 2014; Hutchison
et al., 2013). The decision rule for same day S/not-S clas-
sification is used to classify samples of S/not-S from a dif-
ferent day. A robust decision rule should be insensitive to

6) might, under suitable conditions, be usable for cross- inter-day cognitive variability when a person’s
TABLE 1 Relationship between change classification and person identification
Sources of inter-sample variation
Classification Inter-sample Measurement Cognitive state Neurophys. Category
problem relationship (input) differences differences differences (output)
Change classification  Person S Present Present Absent NP—-
(cross-day) (Day 1 vs. Day 2)
Person S Present Present Present NP+
(Day 1 vs. Day 2)
Person identification =~ Person S Present Present Absent* Same-person
(cross-day) (Day 1 vs. Day 2)
Person S vs. not-S Present Present Present Different
person
Person identification ~ Person S Low Low Absent Same-person
(same-day) (Day 1 vs. Day 1)
Person S vs. not-S Present Present Present Different
person

Note: 1dealized solution concepts for binary change classification (Rows 1 and 2) person identification: Cross-day (Rows 3 and 4) and same-day (Rows 5 and 6).
Each row shows the inter-sample comparisons (left column), the inter-sample differences due to measurement factors (blue), cognitive state (magenta),
neurophysiological factors (orange), and the idealized categorization (green). For details, see text.
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neurophysiology is unchanged. This predicted robustness
was tested on pseudo-rest states that were designed to
challenge cross-day classification with a diverse range of
cognitive variation (Figure 2a).

participated in the study after providing their written
informed consent. Participants had normal or corrected-
to-normal vision, had no history of neurological or psychi-
atric disease, were not under medication and had no cra-

nial metallic implants (including cochlear implants).
Handedness was not a selection criterion (right handed:

2 | MATERIALS AND METHODS 22; left handed: 2; intermediate: 3, based on the Edinburgh
Handedness Inventory; Oldfield, 1971). The participants
2.1 | Participants received monetary compensation on completion of all ses-

sions. The study complied with the Declaration of Helsinki

Twenty seven healthy volunteers (11 female, age and was approved by the Ethics Commission of the Fac-

[mean + SD|: 27.9 years 4 3.4, range: 22-34years) ulty of Medicine, University of Cologne (Zeichen: 14-006).
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FIGURE 2
order on 5 consecutive days. Task details for a single day are illustrated. A white fixation point was continuously displayed during RS1 and

Paradigm and processing pipeline. (a) The protocol involved four tasks (RS1, Tap, RS2, Sequence) performed in the same

RS2, and during ‘waiting’ periods in the Tap and Sequence tasks (highlighted in blue). The Move cue in the Tap task (bottom panel) was a
blank screen that required repeated button presses using the left index-finger (red dots). The Move cue in the Sequence task depicted four
numbers between two arrows (not drawn to scale) and required buttons to be pressed in a continuous cyclical manner according to the
number-to-finger mapping shown. (b) Schematic of feature vector specification. Channels in each mono-location subset are identified by
colour (green: Lg; yellow: Lgc; blue: Lep; red: Lpo). The continuous signal from each channel was segmented into 2-s epochs followed by an
estimation of the frequency spectrum with the fast Fourier transform (FFT). The mean power within each of the five bands was log
transformed (base 10) and concatenated with corresponding values from all other channels to obtain a feature vector. (c) Schematic of a
multiclass decision with an ensemble of individual-specific binary classifiers. Each classifier evaluates the sample (Sx or not-Sx) to output a
decision value (red bars > 0, black bars < 0) and the classifier with the maximum decision value was the predicted label (here, S2)
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Datasets from 24 (of the 27) participants were used
for statistical analyses (see Section 2.6).

2.2 | Apparatus and EEG data
acquisition

Stimuli were displayed using the software Presentation
(v. 20.2 Build 07.25.18, Neurobehehavioral Systems, Inc.)
on an LCD screen (Hanns-G HS233H3B, 23-inch, resolu-
tion: 1920 x 1080 pixels). Behavioural responses were
recorded with the fMRI Button Pad (1-Hand) System
(LXPAD-1 x 5-10 M, NAtA Technologies, Canada).

Scalp-EEG was acquired with a 64-channel active
Ag/AgCl electrode system (actiCap, Brain Products,
Germany) with a standard 10-20 spherical array layout
(ground electrode at AFz, reference electrode on the left
mastoid). Electrooculographic (EOG) activity evoked by
horizontal and vertical eye movements was recorded with
three electrodes (FT9, FT10 and TP10) placed at the left
and right lateral canthi and below the left eye respec-
tively. During acquisition, measured voltages (0.1 pV reso-
lution) were amplified, filtered (low cut-off: DC, high cut-
off: 250 Hz) and digitized at a sampling rate of 2.5 kHz
(BrainAmp DC, BrainProducts GmbH, Germany).

The positioning of the EEG cap was registered with a
stereotactic neuronavigation system (Brainsight v. 2.3,
Rogue Research Inc, Canada) (details below).

2.3 | Experiment protocol and paradigm
Each participant completed five sessions (~40 min each)
that were scheduled at the same time on consecutive days
(Monday to Friday) at one of three possible time slots:
morning (9 aMm x 6), noon (12 pm X 9) or afternoon
(3 pm x 12). For one participant, the fifth session was re-
acquired after a gap of 3 days due to technical problems
during the scheduled recording. Each session consisted of
two RS recordings (RS1 and RS2) interleaved with two
non-rest tasks (referred to as Tap and Sequence) in the
same fixed order, namely, RS1, Tap, RS2 and Sequence. A
schematic of the protocol and the different tasks is shown
in Figure 2a.

2.3.1 | Task rationale

Despite being a task-free state, RS acquisition involves
the task-like specification of (i) a behavioural state speci-
fied by instructions to stay still and keep eyes open
(or closed) (Barry et al., 2007) and (ii) a cognitive state
that is typically specified by instructions to relax and

avoiding thinking of anything specific. This under-
specified cognitive state is a source of uncertainty about
the associated neural state, which is compounded in
multi-day RS as this cognitive state might differ between
days. All tasks that followed RS1 were included to test
the consequences of this uncertainty.

RS2 activity was acquired in the same session on the
same day without any changes to the measurement setup
(e.g., removal of the EEG cap). However, RS2 occurred
~15-20 min after RS1 and always followed the Tap task,
which could lead RS2 to deviate from RS1 in cognitive
state due to potential carry-over effects from the Tap task
(e.g., see Lim et al., 2010). Thus, RS1 and RS2 were differ-
ent measurement instances of resting activity from the
same day with relatively low measurement-driven differ-
ences but possible differences in cognitive state.

The non-rest tasks (Tap and Sequence) were designed
to produce pseudo rest states that deviated from RS1 to
differing extents in cognitive demands and longitudinal
properties. Both tasks required participants to press but-
tons in response to visual cues. These visual cues were
separated by relatively long and variable inter-stimulus
intervals (10-14 s) where participants had to monitor the
screen as they waited for the visual cue. Unknown to par-
ticipants, this ‘waiting’ state (referred to as TapWait and
SeqWait) was the primary focus of these tasks. These
waiting states were similar to the rest state in behaviour
(i.e., eyes open and no movement) but not in the accom-
panying cognitive state, which was determined by the
task. The Tap task required the execution of a simple
repetitive movement in response to the visual cue, which
was assumed to produce a waiting state (viz., covert
movement preparation) that was relatively similar
between days. However, the Sequence task required the
execution of a difficult multi-movement sequence where
behavioural performance could improve with repeated
practice across days. The Sequence task thus served to
elicit a waiting state (viz., covert rehearsal of the move-
ment sequence) that could systematically change across
days with learning.

2.3.2 | Task details

Each task period began with an instruction screen
describing the task to be performed and ended with a
screen that instructed participants to take a short break
and press a button to initiate the next task period when
they were ready.

Resting state (RS1)
A white dot was continuously displayed at the centre of
the screen over this period (duration: ~5 min).
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Participants were instructed to remain still, keep their
eyes open, fixate on the displayed white dot and relax by
not thinking of anything in particular while remaining
awake.

Tap task

As in RS1, a white dot was centrally displayed on the
screen during this task period. However, after variable
intervals of 10-14 s, this dot disappeared for a 2-s period.
The offset of the dot was the cue for participants to use
their left index finger to repeatedly press a button as rap-
idly as comfortably possible until the dot reappeared on
the screen. The task (duration: ~14 min) consisted of
60 movement periods (referred to as TapMov) interleaved
with 60 waiting periods (i.e., TapWait).

Resting state (RS2)
A second RS recording (referred to as RS2) was acquired
with the same task parameters as RS1.

Sequence task

Similar to the Tap task, a white dot was centrally dis-
played on the screen over 60 waiting periods of 10-14 s
each (i.e., SeqWait) that were interleaved with 60 move-
ment periods of 2-s duration (i.e., SegMov). Unlike the
Tap task, each movement period was cued by a centrally
displayed visual stimulus depicting four digits (3-1-2-4)
that were vertically ordered between two vertical arrows
(see Figure 2a). Each number was mapped to a different
button on the response pad. The ordering of the num-
bers indicated the sequence in which the corresponding
buttons had to be pressed using fingers of the left hand.
The arrows indicated that this sequence had to be exe-
cuted in a cyclical manner starting from top to bottom
and back. Here, the required sequence of button presses
following the cue was 3-1-2-4-4-2-1-3-3-1-2-4- ... and so
on. This continuing sequence had to be executed rapidly
until the offset of the stimulus. The sequence used here
was selected to be challenging for rapid execution. To
promote learning of the sequence across trials and days,
the same sequence and number-to-finger mapping was
used on all sessions (and for all participants). No perfor-
mance feedback was provided during the task. However,
on each session, participants were encouraged to
improve their task performance, namely, increase the
number of sequences executed during the response
periods.

Participants used fingers of their left hand to execute
the button-press responses in the Tap and Sequence tasks.
Note that handedness was not an inclusion criterion in
our experiment,

24 | Procedure

On the first day, participants received detailed instruc-
tions about the different task periods of the experiment.
They were familiarized with the number-to-finger map-
pings required for the Sequence task and practiced the
task on a sequence that was different from the one used
in the main experiment. Each session included reminders
to minimize blinking, maintain fixation at all times dur-
ing the EEG recording in all task periods, and avoid
unnecessary movements of the fingers, head and body.
At the start of each session, participants completed the
Positive and Negative Affect Schedule (PANAS) (Watson
et al., 1988) and brief questionnaires about their caffeine
consumption on that day and the amount and quality of
sleep on the previous night.

We used a prospective strategy to minimize inter-day
variation in the positioning of the EEG cap with a spatial
registration procedure on each day. Using a stereotactic
neuronavigation system, the participant’s head was regis-
tered to the Montreal Neurological Institute (MNI) space
using standard cranial landmarks. The positions of five
selected electrodes along the midline and lateral axis
(AFz, Cz, POz, C5, C6) were then registered in this space.
The electrode locations from the first day were used as a
spatial reference for the remaining sessions. On each sub-
sequent session, the cap’s position was adjusted to align
these selected electrodes to their reference locations. Due
to scheduling constraints, this spatial registration proce-
dure was not performed for seven participants.

The application of electrode gel followed after cap
positioning. Skin-electrode impedance was brought
below 10 kQ before starting the recording.

Recordings were acquired in a light-dimmed and
acoustically shielded EEG chamber. Participants were
seated at a comfortable chair with their heads stabilized
with a chinrest in front of the computer screen at a view-
ing distance of ~65 cm. The response pad was placed in a
recess under the table to prevent visibility of the hands
during the task periods. Participants were monitored dur-
ing the recording via a video camera to ensure that they
maintained fixation, minimized eye-blinks and stayed
awake.

2.5 | EEG preprocessing

The EEG data were preprocessed using the EEGLAB soft-
ware (Delorme & Makeig, 2004) and custom scripts in a
MATLAB environment (R2016b, MathWorks, Inc.,
Natick, MA).
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2.51 | Artefact correction/rejection

The continuous recordings were down-sampled to
128 Hz, and then band-pass filtered to the range 1-40 Hz
with a Hamming windowed since FIR filter (high pass
followed by low pass). Artefacts due to oculomotor activ-
ity were corrected in the continuous recordings with
independent component analysis (ICA) using a proce-
dure described by Winkler et al. (2015) (see Supplemen-
tary Methods 1). This artefact correction was performed
separately for each day’s dataset to maintain their inde-
pendence. The recordings were then visually inspected to
reject time periods and channels with artefacts related to
repeated paroxysmal amplitudes changes (>50 pV), elec-
tromyographic contamination, electrical noise and signal
loss. Signals at rejected channels were replaced by inter-
polation from other channels (using EEGLAB’s imple-
mentation of spherical spline interpolation). All channels
were then re-referenced to the Common Average
Reference.

2.5.2 | Epoch definition

The artefact free continuous data were segmented into
2-s epochs according to the six different experimental
states: RS1, RS2, TapWait, TapMov, SeqWait and SeqMov.
The epoch duration of 2 s was heuristically selected to
(i) be short enough to obtain a sufficiently large number
of samples for the classification analyses (see below)
while (ii) being long enough to obtain a suitable estimate
of the power spectrum. A 2-s duration also allowed
epochs from the non-movement periods to be matched to
the duration of the task-defined movement periods.

To exclude carry-over effects from the movement
periods into the TapWait and SeqWait epochs, a time
interval of 500 ms immediately prior to cue onset and
1000 ms immediately following cue offset was excluded
before segmenting the TapWait and SeqWait epochs.
All TapWait and SeqWait epochs that contained button
presses were also excluded. For the two movement-
related states (TapMov and SeqMov), epochs were
defined from +0.25 to +2.25 s following the visual cue
to exclude initial transients and response-time delays
following cue onset and to include any residual move-
ments in the period immediately following the cue
offset.

2.6 | Data quality assessment

Preprocessing resulted in 135 session datasets (27 partic-
ipants x 5 days). For inclusion in the final analysis, each

participant had to have completed the first three of the
four tasks on all sessions and have at least four (out of 5)
session datasets that met the following data-quality
criteria. We required a preprocessed session dataset to
have (i) less than seven rejected channels, (ii) > 90 arte-
fact-free epochs from both RS periods (i.e., RS1 and RS2)
and (iii) > 90 artefact-free epochs from the available
resting-matched conditions (i.e., TapWait and SeqWait).
Note that the number of epochs for TapMov and SeqMov
were necessarily < 60 as each task only had 60 response
periods of 2-s duration. To maintain uniformity across
participants, final analyses were performed only on the
best four of the five session datasets from each partici-
pant. If all five session datasets were of high quality, the
first day’s dataset was excluded as it might involve effects
of initial familiarization.

Datasets from 24 out of 27 participants met the
above data-quality criteria: 18 (of 24) had completed all
four task periods on each session while the remaining
six (of the 24) participants had completed only the first
three (of the four parts). Only two of the 24 participants
required the use of the first day’s dataset. To maximize
the use of the available data, analyses involving only
RS1 and RS2 included data from 24 participants, while
analyses of the non-rest tasks used data from
18 participants.

For the 24 participants, the mean number of epochs
per day per participant for RS1 was 137.81 (min: 125.7,
max: 146.5, SD = 5.28, min/day = 96), and for RS2 was
138.11 (min: 116.5, max: 148.0, SD = 6.89,
min/day = 91). For the 18 participants used to analyse
the non-rest tasks, the mean number of epochs per day
per participant for TapWait was 160.6 (min: 146.0, max:
175.0, SD = 7.23, min/day = 129), and for SeqWait was
172.29  (min: 156.5, max: 186.5, SD =9.13,
min/day = 129). The corresponding values for lower for
TapMov = 55.62 (min: 49.0, max: 59.0, SD = 2.62,
min/day = 41), and for SeqgMov = 56.74 (min: 53.25,
max: 59.5, SD = 1.78, min/day = 43).

2.7 | Classifier specification

Each epoch was a 2-s sample of the ongoing activity from
one person (of 24) on one specific day (of 4), although in
a particular task state (of six possible states: true rest
[RS1, RS2], pseudo-rest [ TapWait, SeqWait] and non-rest
[TapMov, SeqMov]). For our analyses, the basic classifica-
tion problem was whether an epoch’s activity could be
used to identify (i.e., classify) that epoch’s origin either by
(i) a person’s identity (using a multi-class classifier) or
(ii) task state within the same person (using a standalone
binary classifier).
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Feature specification: Power

The power spectrum on each 2-s epoch was the basis for
all classification analyses. Each epoch’s power spectrum
was described using 305 features that specified the power
in five canonical frequency bands (6: 1-3.5 Hz; 6:
4-7.5 Hz; a: 8-13.5 Hz; 5, [low p]: 14-22.5; f, [high p]:
23-30 Hz) at each of the 61 channels. These features were
extracted as schematically displayed in Figure 2b. For
each 2-s epoch of EEG activity, the power spectrum at
each channel over the range of 1-30 Hz (0.5-Hz resolu-
tion) was computed using the fast Fourier transform
(FFT). The power at all frequencies within each fre-
quency band was averaged to obtain the mean power per
frequency band. The mean power per band was then log-
arithmically transformed (base 10) so that the resulting
distribution across epochs had an approximate normal
distribution. These five features (one per band) provided
a minimal description of each channel’s power spectrum.
Finally, these five features from each channel were
concatenated to obtain a single vector with 305 feature
values (5 frequency bands x 61 channels). Because the
shape of the power spectrum (i.e., relative power in the
different bands) as well as the power in each band at dif-
ferent channels might themselves be individual-specific
characteristics, no additional normalization was applied
to the feature values.

For detailed analyses, we defined subsets of the full
feature set referred to here as the (i) mono-band and
(ii) mono-location feature sets. Each mono-band feature
set (By) consisted of features belonging to only one fre-
quency band f. The five mono-band feature sets (each
with 61 features) were Bs, By, B,, By and Bg,. Each
mono-location feature set (L,) (Figure 2b, top panel) con-
sisted of features from 10 bilaterally symmetric channels
in the spatial zone z on the scalp along the anterior-
posterior axis. The four mono-location sets were defined
at the frontal (Lg), fronto-central (Lgc), centro-parietal
(Lcp) and parieto-occipital (Lpo) zones, respectively.

2.7.2 | Machine learning algorithm

The classifiers were numerically estimated (or learned)
using a machine learning algorithm operating on a col-
lection of samples (i.e., training set). For this purpose, we
used a soft-margin linear support vector machine (SVM,
with L2 regularization) algorithm (Boser et al., 1992) as
implemented by the LinearSVC package in the scikit-
learn library (Pedregosa et al., 2011) in Python 3.6. The
SVM algorithm was pragmatically selected for being a
commonly used, standard algorithm. SVM learning was

initialized with parameters: tolerance = 10>, max
iterations = 10%, hinge loss, and balanced class
weighting. The hyper-parameter C had a value of 1, which
has been shown to be a reasonable default for M/EEG
classification (Varoquaux et al., 2017). Tuning C’s value
to our data only marginally changed the classification
accuracies obtained with C = 1 (results not shown). For
all classifier estimations, the training data were always
balanced (i.e., having an equal number of samples per
class).

2.8 | Multi-class classification

Numerous prior studies demonstrate that RS activity can
serve as a ‘fingerprint’ for person identification
(Campisi & Rocca, 2014; Finn et al, 2015; Huang
et al.,, 2012; Pani et al., 2020; Valizadeh et al., 2019).
Although our focus was not on the neural basis of
individual differences and trait identification (Demuru
et al.,, 2017; Finn et al.,, 2017; Gratton et al.,, 2018;
Smit et al., 2005, 2006), a person identification approach,
using multi-class classifiers, provided a convenient tech-
nical platform for our test of individual-specific change
classification.

2.8.1 | Definition
An N-class classifier (N > 2) in our analyses consisted of
an ensemble of N binary classifiers employing a one-vs-
all scheme (as implemented by scikit-learn). The input to
such a multi-class classifier is a single sample (i.e., epoch)
from an unspecified person Sy in the studied group and
the output is the predicted identity of that person
(e.g., S,) (Figure 2c). Each person is associated with a
unique classifier in the ensemble. Specifically, the binary
classifier for each person (e.g., S,) was independently
trained to decide whether a sample was from that person
or from all of the other N — 1 persons (i.e., not S,). There-
fore, to predict a person’s identity with the entire ensem-
ble, the input sample is separately evaluated by the
decision rules of each of the N binary classifiers to obtain
a decision value from each classifier (i.e., the signed dis-
tance to the separation hyperplane; Rifkin &
Klautau, 2004). These decision values are compared, and
the final classification is assigned to the binary classifier
with the maximum decision value. Therefore, for success-
ful classification, the competing decision rules have to
differ from each other to avoid persistent ties between
multiple decision rules.

For compactness, we use the following notational
convention to describe the multi-class classifiers. A
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multi-class classification is an ensemble statistical deci-
sion that involves the conjoint influence of sample distri-
butions from multiple persons. This combined
distribution for a particular state (e.g., RS1) on day d is
denoted as ®'1,. A classification scheme where a deci-
sion rule is trained on samples from AIp (i.e., from task
state A on day p) and tested on samples from BIq
(i.e., from task state B on day q) is denoted as “I, — "I,.
Similarly, a classification scheme where a decision rule
was trained on a collection of samples aggregated from
different days (e.g., *I, and *1,) and tested on "I, is den-
oted as AIP ° AIq — BI,. (see below for details).

2.8.2 | Accuracy scoring

Even though an ensemble was used for multi-class classi-
fication, our focus was on the accuracy of each
individual-specific binary classifier in the ensemble. This
individualized accuracy a; of the classifier for person S;
was defined as

1
ai:E (H1+CR1)

The hit rate H; (or positive identification rate) was the
proportion of instances where samples from S; were cor-
rectly predicted as being from S; by the ensemble (i.e., a
true positive where the classifier S; had a larger decision
value than the competing classifiers). The correct rejec-
tion rate CR; was defined based on the pairwise relation-
ship of S; to each of the other classifiers S;. If the
ensemble predicts S; for a sample from a different person
S;, then it implies that the classifier S; (incorrectly) had a
larger decision value than the competing classifiers, that
is, a false positive. The false positive rate FP;; denotes the
proportion of instances where the ensemble incorrectly
predicted that samples from S; were from S;. The correct
rejection CR;; was defined as CR;; = 1 — FP;;. The over-
all correct rejection CR; for S; was defined as the mean of
the pairwise correct rejection rates

1

CR, =
N-1

N
Z CR;jwherej # i.
j=1

With this formulation, random chance accuracy for
each classifier was 50% even though random chance for
the entire ensemble was (100/N)%. Furthermore, the
mean accuracy for a particular classification scheme
(e.g., "I, — ®*'I,) as used here refers to the mean accu-
racy of the individual classifiers in the ensemble as calcu-
lated by the above procedure.

The accuracy score can have different contributions
from the hit rate (e.g., high false negatives) and the

correct rejection rate (e.g., high false positives). To disen-
tangle these contributions, we also estimated the recall
and precision scores (Davis & Goadrich, 2006) for each
individual S; as defined below:

True Positives

Recall = — —,
True Positives + False Negatives

True Positives

Precision = — —.
True Positives + False Positives

The recall score for S; would be low if samples from S;
are misclassified as belonging to another individual
(i.e., high false negatives). However, the precision score
for S; would be low if samples from other individuals are
misclassified as belonging to S; (i.e., high false positives).

Confusion matrices were used to visualize which indi-
viduals were misclassified (i.e., confused) with each
other. The rows of a confusion matrix represent the true
label of a sample and the columns indicate the predicted
label for that sample by the ensemble. The value at the
row corresponding to S; and column corresponding to S;
indicated the proportion of samples from S; that were
classified as S;. The rows/columns of the matrices were
re-organized to cluster together individuals who were
confused with each other. This was implemented with
the so-called Louvain method to maximize modularity
(Blondel et al., 2008), implemented in the Community
Detection Toolbox (Kehagias, 2021).

2.9 | Evaluation of classifier robustness
The robustness (or generalization) of person identifica-
tion with a particular classifier was evaluated by the qual-
ity of identification decisions on test samples with a
different origin from the samples used to obtain the classi-
fier (i.e., the training samples). This evaluation was orga-
nized into two schemes based on whether the training
and test samples belonged to the (i) same day versus a
different day (Figure 3a) and the (ii) same task state ver-
sus a different task state.

29.1 | Same-day identification

Person identification in task state A from samples on a
single day p (i.e., “I, — “I,) was a baseline indicator of
whether AIP contained individual-defining information in
the absence of (i) inter-day differences or (ii) cognitive
state differences. Same-day identification accuracy for a
particular task state was estimated using a fivefold cross-
validation (CV) procedure (Blum et al., 1999). Specifi-
cally, the set of samples from state A on 1 day (e.g., day
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FIGURE 3 Person classification schemes and aggregation. (a) Classification schemes *Ip,, — AIDy (rows) were defined by the
configuration of training (left column) and test sets (right column) across days (D;). The sample distribution (Ip,) included samples from all
individuals (multi-coloured boxes). Percentages indicate the proportion of each day samples used for training/testing. Same-day
identification was estimated with fivefold cross-validation (CV). Cross-day aggregation training used an equal proportion of samples from
each day and the total number of training samples was the same across aggregation levels. (b) Cross-day (1-day) accuracy can be lower than
same-day accuracy (red-arrow) due to day specificity of the decision rule. Training decision rules on aggregated samples (y-axis) can change
cross-day accuracy, which could increase (blue), or stay constant (dark green), or even decrease (light green). (c) Idealized example of how
1-day cross-day accuracy (Column 1) can increase with aggregation (Column 2). Samples from two classes (stars, circles) are shown along
two features (day-general: X, day-specific: Y) with each days samples shown in different colours (p: blue; q: orange; r: purple). The 1-day
decision rule (I,) (top left panel) is depicted with a thick black line and shaded areas. This decision rule accurately classifies samples from
days g and r but with errors. However, a decision rule trained on samples from days p and q (I, - I) (thick red line, red shaded area) reduces
cross-day classification errors (lower right). (d) Idealized example of high day specificity. Even though the classes are separable within each
day, the 1-day decision rule (I,) has a poor cross-day accuracy (Column 1). Two-day training (Column 2) produces a decision rule with
worse classification both on the training set itself (dotted red line) as well as across days (lower right)

D1 in Figure 3a, upper row), were partitioned into five repeated so that each fold was used as a test set once. The
equal folds. Training was performed on four folds (80% of =~ mean identification accuracy across folds was defined as
the sample set) and tested on the left-out fifth fold (the the same-day identification accuracy for that day
remaining 20%). This training-testing procedure was (e.g., D1). The CV accuracy was estimated separately for
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each of the four days, and the mean CV accuracy across
days was denoted as the same-day accuracy for task
state A.

2.9.2 | Cross-day identification

To evaluate cross-day identification in task state
A (AIP — AIq), a classifier trained on samples from day
p was used to identify persons from samples from a dif-
ferent day q. A reduction in cross-day accuracy relative to
same-day accuracy (e.g., AIP —21,) (red arrow,
Figure 3b) is an indicator of reduced robustness to day-
dependent differences between AIP and AIq. In this fram-
ing, cross-day accuracy was only interpreted if same-day
accuracy was greater than random chance.

We additionally sought to evaluate whether differ-
ences in cross-day accuracy relative to same-day accuracy
were truly due to ‘day’-specific factors. For this purpose,
the day-specific properties of the training set were sys-
tematically varied (using an aggregation procedure) while
holding the test set constant. The day specificity of train-
ing set was modulated by including samples from differ-
ent days (e.g., “Ig o “Ig... “Ig, — “L.). In an n-day
training set, the k training samples per person was an
aggregation of k/n samples from each of n different days.
Here, n could take the value =1, 2 or 3 (see Figure 3a,
first column). The number of samples per person, k, was
held constant to enable comparison of classification accu-
racy across all values of n. Samples in the test set were
never aggregated from different days. Mean identification
accuracy for a particular n-day aggregation scheme was
obtained by (i) independently estimating the accuracy for
each possible training/test set combination that satisfied
the day constraints (e.g., day p # day q # day r) and
then (ii) averaging these accuracy values.

We assume that increasing aggregation (i.e., by
increasing n) would discount day-specific properties in
favour of day-general properties during training. There-
fore, cross-day accuracy might change with increasing
aggregation depending on the relative balance of day-
specific versus day-general properties in the samples
(Figure 3b). Figure 3c,d shows idealized examples of how
aggregation could change cross-day accuracy. In the
example shown in Figure 3c, the two classes systemati-
cally differ on feature X (x-axis) in a similar manner
across days (i.e., X’s role has high day generality). How-
ever, feature Y (y-axis) has a role in distinguishing the
classes on day p but not on other days (i.e., Y’s role has
low day generality). Therefore, a decision rule trained on
day p has a low accuracy in classifying samples from
other days (Column 1). However, training on aggregated
samples from day p and g (Column 2) discounts the role

of Yin the decision rule, which improves cross-day classi-
fication. Figure 3d illustrates an extreme example of day
specificity where the classes systematically differ on fea-
tures X and Y within each day but the relative roles of
X and Y differ greatly across days (i.e., high day specific-
ity and low day generality). In this scenario, training a
decision rule on aggregated samples from days p and
q reduces the accuracy of cross-day classification.

2.9.3 | Cross-task identification

To evaluate cross-task identification of task state A, a
classifier trained on samples from day p was used to iden-
tify persons from samples from a different task state B on
a different day q (i.e., *I, — "I,). Cross-task identifica-
tion was treated as a special instance of cross-day identifi-
cation (i.e., training and test samples from different days)
to conservatively exclude any inter-task similarities pro-
duced by the joint preprocessing of all tasks from the
same day. Therefore, a reduction in cross-task accuracy
relative to same-day/same-task accuracy (e.g., *I, — “I,)
was an indicator of reduced robustness to differences in
the task states A and B compounded by inter-day differ-
ences. In this framing, cross-task accuracy was only inter-
preted if cross-day/same-task accuracy was greater than
random chance.

2.10 | Weights and normalized weights
Each person’s linear decision rule was defined by a con-
figuration of weights assigned to the different features.
With these feature weights, a sample could be assigned a
decision value as follows:

Decision value = ZwiPi —b,

1

where, for each feature i, w; denotes the feature weight,
P; denotes the sample power, and b is a general
bias term.

From this expression, a feature weight that differs
from zero irrespective of sign (i.e., [w;| > 0) is an indicator
that the corresponding feature was relevant for classifica-
tion even if only indirectly (Haufe et al., 2014; Schrouff &
Mourao-Miranda, 2018). However, the relative contribu-
tion of a feature i to the final decision value also depends
on |w;P;|. For features i and j, the weight |w;| might be
greater than |wj|, while the sample power |P;| might be
less than |P;|. Consequently, neither the raw absolute
weights nor power is an unambiguous guide to the rela-
tive influence of features i and j on the classification
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decision. Therefore, we defined a feature i’s unit weight
w; as the idealized weight value such that w;P; =1. The
normalized weight was thus defined as the ratio w;/w;,
which was effectively equal to w;P;.

A feature’s characteristic weight was obtained by
averaging the feature’s weight over all decision rules con-
sistent with a particular scheme (e.g., “I, — *I,)
(Figure 3a). Similarly, a feature’s characteristic power
was the grand average of the power across samples and
days. The absolute normalized weights (i.e., |wP|) were z-
scored within each band for each subject to retain infor-
mation about band-specific, inter-feature weighting
differences.

211 | Statistical analysis

Statistical tests were performed using the pingouin pack-
age (version 0.3.2) (Vallat, 2018) and MATLAB Statistics
toolbox. The random chance accuracy for the multi-class
and standalone binary classifier was 50%, and accuracy
deviations from random chance were evaluated with one-
sample ¢ tests. Correlations between individual accuracy
values were evaluated using Spearman’s rank correlation
due to the focus on relative ordering rather than a strict
cardinal relationship. Tests with a p value < alpha = .05
were deemed to be statistically significant. For tests
involving multiple comparisons, p values were evaluated
against a Bonferroni-corrected alpha threshold. Due to
the sequential relationship between the different multi-
class classification schemes, the planned tests on the
same-day accuracy (CV) and cross-day accuracy were
evaluated at an alpha threshold of .05. However, tests on
2- and 3-day accuracy were evaluated at a threshold of
alpha = (.05/2).

For plots depicting mean values at different levels of a
single factor, error bars indicate the standard deviation
(SD). For plots depicting the effects of multiple factors,
error bars displaying the within-subject standard error
(s.e.m.) (O’Brien & Cousineau, 2014). The type of error
bar used is explicitly noted in the figure caption.

3 | RESULTS
3.1 | Face validity of individual power
spectra

Our investigation assumed that an individual’s power
spectrum at rest can systematically (i) differ between days
and also (ii) differ from the spectra of other individuals.
We first confirmed the face validity of these assumptions
in our data.

The presence of structured inter-individual differ-
ences during RS1 was qualitatively evident in the mean
(full) power spectrum at different channels (Figure 4a)
before its reduction to the minimal description used for
the classification analyses. As shown for one example
individual S;, individual power spectra had a similar
form across channels with a higher power in the § and «
bands and a higher overall power in the posterior and
anterior channels relative to the central channels. The
diversity of pairwise differences between individual spec-
tra highlights the difficulty of representing an individ-
ual’s unique properties. For example, the combination of
channels and frequencies (i.e., features) at which S, and
S; showed prominent differences were not the same fea-
tures at which S, differed from Ss. Nonetheless, the
required decision rule to identify S, was a single feature
configuration capable of distinguishing S, from all others
while allowing S, to be robustly re-identified across days.

Systematic inter-day differences were evident from
the dissimilarity between samples from all participants
and all days (90 samples per participant per day)
(Figure 4b). The dissimilarity between any two samples
was described by their correlation distance (=1 —r,
where r is the Pearson’s correlation coefficient)
(Diedrichsen & Kriegeskorte, 2017; Dimsdale-Zucker &
Ranganath, 2019; Pani et al., 2020). For all 24 participants,
the mean dissimilarity between samples from the same
day was lower than between samples from different days
(cross-day) (t,3 = —6.74, p < .0001). However, the dissim-
ilarity between same-day and cross-day samples varied
from person to person suggesting their possible con-
fusability with samples from other individuals. This was
the critical issue to be resolved with an appropriate deci-
sion rule, to be identified using machine learning.

3.2 | Individual identification from RS
activity within and across days

3.2.1 | High same-day accuracy but reduced
cross-day accuracy of individual decision rules

To identify a person from a 2-s sample of RS activity with
an ensemble classifier, a decision rule was numerically
estimated to represent each person’s unique RS charac-
teristics. The decision rules estimated for each day could
identify each person (of 24) from a sample acquired on
the same day (i.e., according to the scheme **'I, — **'I,))
with a mean cross-validated (CV) accuracy of
99.98 & 0.04% (mean + SD) that was significantly larger
than the theoretically expected accuracy for random
guessing (> 50%: t,3 = 5596.13, p < .00001) (Figure 5a,
Table A.1). However, for longitudinal tracking, a key
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Inter-individual and inter-day differences. (a) Matrix showing the (full) power spectra in RS1 at all channels (averaged

across samples and days) for eight selected individuals (S;, diagonal, thick black boundary) and their pairwise differences. The difference in

power spectra for each pair of individuals S; and S; (i.e., S; and S;) is shown at row i, column j of matrix. In each spectrogram, channels have

a posterior-to-anterior ordering. Insets show magnified view of the power spectrum for S; (left upper) and differences for S, and S; (right

upper) and S,-S; (right lower), with frequency band boundaries marked with black lines. (b) Inter-sample dissimilarity matrix for RS1

(90 samples per individual per day, each sample was defined by 305 features = 61 channels x 5 bands). The dissimilarity of two samples was

defined by their correlation distance (= 1 — r, where r is the Pearson’s correlation coefficient). Large black squares on diagonal contain

values from the same individual, and the four smaller squares each contain same-day values

demand is that decision rules from 1 day should identify
a person from samples acquired on a different day
(i.e., RSIIP — RSlIq). The same-day decision rules identi-
fied individuals across days with a mean accuracy of
92.10% + 6.8% that was higher than random chance
(t3 = 30.14, p < .00001) but less accurate than same-day
identification by ~8% (paired t,3 = 5.64, p = .00001).

The confusion matrix (Figure 5b) of how individuals
were misclassified during cross-day (1-day) identification
revealed four clusters of individuals who were confused
with each other. Notably, the individuals with the lowest
cross-day accuracies (namely, S,, Si;, Sis and S,4)
belonged to different clusters rather than being solely
confused with each other. The clustering of misclassified
individuals suggested that errors in identifying an indi-
vidual Sx were due to a combination of (i) changes to
Sx’s RS activity between days (i.e., false negatives) and
(ii) changes to other individuals who were then mis-
classified as Sx (i.e., false positives). Nevertheless, the
increased errors in individual identification illustrate the
challenge of NP+/NP— decisions. Errors in identifying a
person Sx across days seemingly imply that Sy’s unique
identifying characteristics had changed across days even
though the individuals here were unlikely to have chan-
ged in their underlying neurophysiology over the 5-day
testing period.

3.2.2 | Aggregated training increases cross-
day accuracy

In numerical terms, the cross-day loss in accuracy implies
that certain properties of each day’s decision rules were
of predictive relevance to same-day samples but of lim-
ited generality to other days. To discount the role of these
day-specific properties in favour of day-general proper-
ties, the decision rules were trained using samples aggre-
gated from multiple days (i.e., RSle ° RSqu e — S
(Figure 5a). The mean cross-day accuracy increased from
92.10% + 6.8%  without aggregation (l-day) to
95.93 + 3.63% with 2-day aggregation, with an additional
increase to 97.39% =+ 2.65% with 3-day aggregation (one-
way analysis of variance [ANOVA], F,4s = 28.83,
p <.00001). Following aggregation, the cross-day accu-
racy was a mere ~2% lower than the same-day accuracy.
The effects of aggregated training on individual-specific
identification errors are shown in Figure 5c. The decision
rules obtained with 3-day aggregation were associated
with fewer false negatives (indexed by the higher recall
score) especially for individuals with the lowest 1-day
accuracies, that is, S,, S;;, S;5 and S,4. This was associ-
ated with interrelated changes in errors in individuals
who belonged to the same cluster. For example, there
was a prominent reduction in false positives (indexed by
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Horizontal dotted line depicts random chance accuracy (50%). Error bars: standard deviation (SD) (** = .00001 < p < .001;

*** = p <.00001). (b) Confusion matrix for cross-day (1-day) identification (only errors are shown). Dotted squares indicate clusters of
individuals who are more confused with each other. Identities of individuals with the lowest cross-day accuracies are highlighted with red
squares. (c) Changes to precision and recall scores with aggregation for the whole group (shown with boxplots) and for individuals (1-day:
blue dots; 3-day: orange dots). Individuals with lowest 1-day accuracy are indicated with rings and thick grey lines. Green lines highlight S,,,
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the higher precision score) for S;7; who was in the same
cluster S,4 and S,; (highlighted in green). The increased
accuracy with aggregation despite the true inter-day dif-
ferences in RS activity was consistent with the presence
of day-general properties (Figure 3).

3.2.3 | Cross-day and cross-measurement
identification are not equivalent

We next assessed whether the above accuracy relation-
ships across days (with and without aggregation) was
related to a difference in days rather than simply a differ-
ence in measurements.

In our experimental protocol (Figure 2a), RS2 was
the second RS measurement on each day. The effects of
aggregation on cross-day identification with RS1 were
successfully replicated on RS2 without statistically detect-
able differences (Table A.1) (two-way ANOVA, condition
[RS1, RS2] x type [1-day, 2-day, 3-day], type * condition:
F, 46=0.56, p=.57; type: F, 4= 31.31, p <.00001;
condition: F;, ,3 = 0.38, p = .54]. Importantly, RS2 vali-
dated the day-specific properties of the decision rules
(Figure 5a). Same-day decision rules from RS1 classified
samples of RS2 from the same day (**'I, — *%’I,) with a
mean accuracy of 99.55 £ 1.15% that was significantly
greater than the accuracy in classifying RS1 across days
', — ®'1,) (9210 £ 6.84%) (paired 3 = 5.19,
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p = .00003). Furthermore, RS2 validated the importance
of aggregating samples from different days (rather than
different measurements) to reduce day specificity. Deci-
sion rules trained on aggregated same-day samples from
RS1 and RS2 (**'1, » ®5°I, — ®5'L,) had a lower cross-day
accuracy (92.38 + 6.92%) than decision rules trained on
aggregated RS1 samples from two different days
M, o B, ™M) (9593 +£3.63%)  (paired
s = —4.83, p = .00007).

In summary, the reduction in cross-day accuracy
without aggregation was indicative of inter-day (rather
than inter-measurement) variations in RS activity.
Despite this inter-day variation in RS activity, the cross-
day accuracy increased with aggregation revealing the
existence of day-general properties in RS activity that
were unchanged across days. These properties were con-
sistent with an activity configuration that was putatively

defined by individual-specific = neurophysiological
constraints.
3.3 | Information organization in RS

activity for individual identification

The hypothesized configuration in RS activity was
suggestive of a multivariate relationship between dis-
tributed features. However, the accuracy relationships
described above do not indicate whether such a dis-
tributed configuration was necessary to enable individ-
ual identification. Therefore, we evaluated the

information organization required for individual
identification.
3.3.1 | Low cross-day identification with

information from only one frequency or one
location

Each sample was a snapshot of RS activity described by
305 informational features (5 bands x 61 channels). To
test the informational role of these different features, we
evaluated whether identification comparable to the full
feature set was possible with subsets of features that were
defined either by frequency band (i.e., mono-band sets)
or spatial location (i.e., mono-location sets).

Each mono-band feature set (By) consisted of features
from one frequency band f at all 61 channels. For all five
mono-band sets (Figure 6a, Table A.2), same-day identifi-
cation had a mean accuracy greater than 95%. However,
the size of the cross-day loss in accuracy was band-
dependent and ranged from ~14% for B, to nearly ~32%
for B; (ANOVA, type [CV, 1-day] x band [Bs, By, B,, Bs1,
Bg,], type * band: F,g, =24.83, p <.00001; type:

Fi,3=23211, p<.00001; band: F, o, =40.30,
D < .00001). The divergence in cross-day losses for B, and
B; was striking as these two bands have a characteristi-
cally higher power relative to the other bands (Figure 4).
Training with multi-day aggregation (Figure 6b)
increased cross-day accuracy by differing amounts for
each band by, for example, +10% for By, but only +6%
for Bs (ANOVA, band [Bs, By, B, Bs1, Bso} < type [1-day,
2-day, 3-day], type * band: Fg 134 = 9.19, p < .00001; type:
F, 4 =146.02, p<.00001’; band: F, o, =43.13,
p < .00001). However, even with 3-day aggregation, the
residual difference between cross-day and same-day accu-
racy (minimum: ~7% for B,, maximum: ~26% for Bs)
was larger than the ~2% difference with the full
feature set.

Each mono-location feature set (L) consisted of 50 fea-
tures (5 bands x 10 channels) in the spatial zone
z (Figure 2a). The mean same-day accuracy was greater
than 95% for all mono-location feature sets (Figure 6c,
Table A.2). However, the mean cross-day (1-day) accu-
racy showed reductions of ~12%-16% for all locations
(ANOVA, type [CV, 1-day] x location [Lg, Lrc, Lep, Lo,
type * location: Fs;g9=3.77, p=.015; type:
Fi1,3=10891, p<.00001’; location: F; o= 5.45,
p = .0020]. The mean cross-day accuracy for the fronto-
central (Lgc) and centro-parietal (Lcp) sets were margin-
ally higher than for the parieto-occipital (Lpp) and frontal
(Lg) sets. This zonal accuracy difference was notable as
the mean power for all bands was typically higher over
the posterior and anterior channels than the centrally
located channels (Figure 4a). Aggregation increased
cross-day accuracy by ~6% for all four location sets
(Figure 6d) (ANOVA, location: [Lg, Lgc, Lep, Lpo] X type
[1-day, 2-day, 3-day], type * location: Fs 133 = 2.07,
p = .06; type: F, 4 =115.38, p <.00001; location: F;,
60 = 4.79, p =.0043). Nevertheless, the residual ~7%-
10% loss in cross-day accuracy was larger than with the
full feature-set.

In summary, all the mono-band and mono-location
sets contained sufficient information to enable same-day
identification with nearly error-free accuracy. However,
this information had a low day generality. Even with
aggregation, these feature sets had a lower cross-day
accuracy than the full feature-set that combined these
feature sets together. This divergence suggests that the
higher cross-day robustness with the full feature set
involves a role for multivariate relationships between dif-
ferent frequency bands (i.e., unlike the mono-band sub-
sets) at spatially distributed channels (i.e., unlike the
mono-location subsets). To assess how this multi-feature
configuration might be organized, we evaluated the pat-
tern of weights associated with the different features of
the full feature set.
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FIGURE 6
feature sets of increasing frequency (x-axis) on the same-day (blue, CV) and across-days (orange, 1-day). Light-coloured dots/lines depict

Identification at rest with mono-band/location feature subsets. (a) Mean identification accuracy for RS1 with mono-band

individual accuracies (N = 24). Error bars: standard deviation (SD). (b) Change in cross-day identification with increasing aggregation (x-
axis) for different mono-band feature subsets (coloured lines). Error bars: Within-subject s.e.m. (O’Brien & Cousineau, 2014). (c) Mean
identification accuracy for mono-location feature sets (x-axis, from anterior to posterior) with graphical representation and error bars as in
Panel (a). (d) Change in cross-day identification with increasing aggregation (x-axis) for different mono-location feature subsets (coloured

lines). Error bars: Within-subject s.e.m. Horizontal dotted lines depicts the random chance accuracy (50%) in all panels

3.3.2 | Concentration of high-consistency
informative features at fronto-central and
occipital zones

Each individual’s decision rule was defined by the config-
uration of weights assigned to the different features.
Because a decision rule uniquely identifies a person, the
feature weights that define a person’s decision rule would
need to be different for that of all others. Despite these
weighting differences, certain features might nevertheless
be informative across individuals. To identify these fea-
tures, we evaluated the inter-individual consistency in
the influence of different features on the identification
decision. A feature’s influence on the individual’s deci-
sion rule was quantified by the feature’s normalized
weight (to correct for inter-feature power differences)
that was then z-scored (within each frequency band) to
retain inter-feature relevance differences.

Figure 7 shows the topographic distribution of these
high-consistency features of the full feature-set with
mean normalized, z-scored weights (averaged across indi-
viduals) that were significantly greater than zero (see
Figure S1 for corresponding non-normalized [raw]
weights). At corrected thresholds (see ¢ values in
Figure 7, lower panels), the features associated with all
frequency bands except the § band contained at least one
high-consistency feature. Rather than having an idiosyn-
cratic organization, the high-consistency features were
concentrated at distinctive zones in each frequency band.

In By, there was a concentration of high consistency
features at CP1 and C3, with the addition of CP3 with
aggregation. There was a similar, although weaker, con-
centration of consistent features at corresponding chan-
nels over the right hemisphere. Showing a similar spatial
organization, the high-consistency features in By, showed
a striking bilaterally symmetric configuration along the
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transverse midline at channels C3, Cz and C4 with an
aggregation-modulated role for CP6 and T7 (and possibly
T8). This similarity in organization was notable since the
frequency ranges of the ¢ band (4-7.5 Hz) and $; (14-
22.5 Hz) were not contiguous and were separated by the
a band.

Unlike this central concentration of features in By,
and By, the features in B, contained a single, strongly
consistent feature in the occipital zone at PO3. At
uncorrected thresholds, there were other distributed fea-
tures across the scalp that were weakly consistent for
both 1- and 3-day identification, namely, at AF3, C3, P8
and O2. Similarly, the features of the high-frequency j,
band (i.e., By) only had a single consistent feature at P1
with a diffuse distribution of consistent features at
uncorrected thresholds.

In general, the distribution of high-consistency fea-
tures was by itself not a simple indicator of their contri-
bution to cross-day accuracy. For example, the relative
number of high-valued (raw) weights in the different
bands and spatial locations had a low correspondence to
relative accuracy of cross-day identification based solely
on the mono-band/location subsets (see Figure S2). Nev-
ertheless, the organized distribution of high-consistency
features at channels over the sensorimotor cortex and
the occipital cortex was prima facie support for an
individual-specific configuration with a basis in neuro-
physiological constraints. These high-consistency zones
were of particular relevance to the relationship of RS1
to the non-rest task states where the power over the
sensorimotor and occipital zones was expected to differ
from RS1.
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3.4 |
states

Relationship of rest to non-rest

The behavioural demands during TapMov and SeqMov
were designed to modulate the cognitive states during the
TapWait and SeqWait periods and produce neural activ-
ity deviations from RS1 in the absence of behavioural dif-
ferences. Furthermore, the Tap and Sequence tasks were
designed to elicit neural states that varied between days
for Sequence (low cross-day similarity) but remained con-
stant for Tap (high cross-day similarity). We sought to
first explicitly verify that such deviations from RS1 were
indeed present. Note that all analyses of Tap and Seq
states were performed in a subgroup of N = 18 partici-
pants (see Section 2).

34.1 | Neural activity during Tap and
Sequence verifiably deviates from RS1

The inter-day changes in behaviour during the TapMov
and SeqMov periods were consistent with the experimen-
tal assumptions (Figure 8a). During TapMov, the mean
number of button presses during the cued 2-s period
(~10-11) remained effectively constant across days (one-
way ANOVA, F, ¢ = 0.50, p = .73). In contrast, during
SeqMov, the mean number of button presses increased
from ~7 on the first day to ~11 on the fifth day (one-way
ANOVA, F, ¢ =40.75, p <.00001). This inter-day
change in motor performance in SeqgMov was systemati-
cally different from TapMov as confirmed by the statisti-
cally significant interaction in an ANOVA with factors
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FIGURE 8 Difference between RS1 and task states. (a) Change in behaviour across days indexed by mean number of button-presses
per response period on each day (x-axis) during TapMov (blue) and SeqMov (orange). Error bars: Within-subject s.e.m. (b) Movement-related
power dynamics in the g band (14-30 Hz) in TapMov (blue) and SeqgMov (orange) at channels C4 (upper right) and Oz (lower right) averaged
across participants and days. Intervals marked in grey were discarded from the TapWait and SeqWait samples used for classification to avoid
movement-related carry over effects into the waiting periods. Scalp plots (left panel) show the mean power distribution over the period

[4+1 s, +1.5 s] following onset of the movement cue. (c) Same-day/cross-day accuracy in distinguishing RS1 versus pseudo-rest states (green)
and RS1 versus movement states (orange) using within-subject binary classifiers. Cross-day differences to RS1 were lowest for TapWait (far
left) and highest for SeqMov (far right). Error bars: standard deviation (SD). (d) Person identification accuracy (multiclass) when the
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(condition [TapMov, SeqMov] x days [D1,.., D5];
condition * days: F,, ¢s = 21.00, p < .00001; condition: F;
17 = 5.73, p = .03; days: F, ¢ = 21.53, p < .00001).

The neural state during the movement period
(TapMov, SeqMov) showed typically expected dynamic
states (Figure 8b, Supplementary Methods 2). Changes in
the mean f power at channel C4 (contralateral to the
moved fingers) were in line with the event-related de-
synchronization/synchronization (ERD/ERS) phenome-
non for repetitive movements (Alegre et al., 2004; Cassim
et al,, 2000; Erbil & Ungan, 2007; Pfurtscheller & da
Silva, 1999), namely, a power reduction at the onset of
movement execution (i.e., ERD) with an increase after
the termination of all movements (i.e., ERS). Further-
more, the f power changes at Oz showed a task-
dependent neural response consistent with differing
visual stimulation, that is, an increase for TapMov (blank
screen) but a decrease for SeqMov (image depicting the
sequence). These movement-vs-wait differences were val-
idated in the samples used for classification. A within-
subject binary classification of TapWait versus TapMov
had a mean cross-validated accuracy of 85.91 + 7.23%
(>50%: t;7 =21.06, p <.00001); and SeqWait versus
SeqMov had a mean CV accuracy of 94.58 + 3.20%
(>50%: t;; = 59.02, p < .00001).

The critical verification for our study was the relation-
ship between RS1 and the pseudo-rest states (TapWait,
SeqWait). Samples from TapWait and SeqWait were dis-
tinguishable from RS1 on the same day with high cross-
validated accuracy (RS1 vs. TapWait: 88.28 + 5.70%; RS1
vs. SeqWait: 95.12 + 3.74%) (Figure 8c, left panels,
Table A.3). However, the cross-day accuracy (without
aggregation) for both RS1  versus TapWait
(62.91 + 6.44%) and RS1 versus SeqWait (67.79 + 8.53%)
was substantially lower than the same-day accuracy by
more than ~25%. Nevertheless, the cross-day accuracy
for RS1 versus SeqWait was marginally higher than for
RS1 versus TapWait with increasing aggregation
(ANOVA: condition [RS1 vs. TapWait, RS1
vs. SeqWait] x type [1-day, 2-day, 3-day],
condition * type: F, 34 = 6.22, p = .005; condition: F;
17 = 8.37, p = .01009; type: F, 35 = 38.89, p < .00001).

TapMov and SeqMov were also distinguishable from
RS1 on the same-day with high (cross-validated) accuracy
(RS1 vs. TapMov: 93.56 + 4.12%; RS1 vs. SeqMov:
97.81 £ 1.76%) (Figure 8c, right panel, Table A.3). Similar
to the wait periods, the cross-day accuracy for RS1 versus
SeqMov was higher than for RS1 versus TapMov across
aggregation levels (ANOVA: condition [RS vs. TapMov,
RS1 vs. SegMov] x type [1-day, 2-day, 3-day],
condition * type: F, 34 =0.61, p =.55; condition: F;
17 = 30.91, p = .00003; type: F, 34 = 69.47, p < .00001).

The above findings verified the neural activity differ-
ences in the task states in Tap and Sequence to each other

and to RS1. Crucially, the structure of the same-day dif-
ferences had a low cross-day generality.

3.4.2 | Robust identification of individuals
from Tap and Sequence activity within and
across days

The above differences between task states and RS1 raised
the issue of whether the task-related functional states
also disrupt the information that enables individual iden-
tification with RS1. To assess this possibility, we evalu-
ated whether the different Tap and Sequence task states
contained sufficient information for person identification
in a same-task classification scheme (i.e., with the
scheme *I, — *I, for task X) (Figure 8d).

The same-day accuracy for both TapWait and
SeqWait was ~99% (Figure 8d, left panels, Table A.1).
The mean cross-day accuracy (without aggregation) for
TapWait  (92.58 + 6.39%) was lower than its
corresponding same-day accuracy by only ~7%
(t;7 = 4.92, p = .00013). Similarly, for SeqWait, the mean
cross-day (1-day) (93.67 &+ 7.35%) accuracy was lower
than the same-day accuracy by ~6% (t;7 = 3.65,
p = .00197). Furthermore, the effect of aggregation on
mean cross-day accuracy for TapWait and for SeqWait
was statistically indistinguishable (ANOVA: condition
[TapWait, SeqWait] x type [1-day, 2-day, 3-day];
condition * type: F, 34=0.88, p = .42; condition:
F; 17 =1.35, p = .26; type: F,, 3, = 21.30, p < .00001).

Despite the deviations of TapMov and SeqMov along
both the behavioural and cognitive dimensions of rest
and their differences with each other, the accuracies of
individual identification across days for TapMov and
SeqMov were greater than 90% for all levels of aggrega-
tion and were not statistically distinguishable from each
other (Table A.1, Figure 8d, right panels) (ANOVA: con-
dition [TapMov, SeqMov] x type [1-day, 2-day, 3-day];
condition * rype: F, 34 = 0.86, p = .43; condition: F;
17 = 1.26, p = .28; type: F, 34 = 14.50, p = .00003).

Thus, individual identification was robustly possible
in the task states despite their differences to RS1. Fur-
thermore, the identification accuracy was similar
between the Tap and Seq states despite their functional
differences. Two further lines of evidence supported the
possibility that these similarities were based on common
task-independent properties. The spatial distribution of
high-consistency features for these states (Figure 9a,
Figure S3) exhibited a striking qualitative similarity to
each other as well as to the corresponding distribution
for RS1 (Figure 7). Additionally, the individual cross-day
(1-day) accuracy in these task states showed a striking
correlation to the corresponding cross-day accuracy in
RS1 (Figure 9b) (threshold: p < .05/4; TapWait: r[17]
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asterisk (p < 0.05/61, see Figure S3). Each frequency band (column) had a characteristic spatial distribution of high weighted channels that

was qualitatively similar across task states and also to RS1 (Figure 7). (b) Scatter plots of cross-day (1-day) identification accuracy in RS1 to

the corresponding same-task accuracy in the pseudo-rest states (upper row) and movement states (lower row). Each dot represents one

individual. correlations were assessed with Spearman’s rank order correlation (threshold: p < .05/4)

= .882, p <.00001; SeqWait: r[17] = .635, p = .00466;
TapMov: r[17] = 0.75, p = .00034; SeqMov: r[17] = .653,
p = .00329). Thus, the inter-individual relationships rev-
ealed by the errors in cross-day classification during RS1
(Figure 5b) seemingly extended to these non-rest states as
well. We next turned to a formal assessment of this cross-
task relationship.

3.5 | Robust generalization of rest-based
decisions to cross-task individual
identification

If person identification with RS1 was based on a neural
configuration related to an individual’s neurophysiologi-
cal state, then identification should be possible despite
cognitive state variations. Therefore, decision rules
trained on RS1 should be capable of accurate person
identification with samples acquired from the pseudo-rest
states (TapWait and SeqWait) and the movement states
(TapMov and SeqgMov).

We used the cross-task scheme RSIIP — qu to test the
invariance of RS1-based identification to inter-day cogni-
tive state variations (i.e., task states X) (Figure 10a,
Table A.4). Increasing deviations from RS1 solely due to

cognitive state differences (X = [RS1, TapWait, SeqWait])
did not produce comparable, statistically distinguishable
reductions in mean identification accuracy (RS1:
92.79 + 6.76%, TapWait: 91.90 £ 6.46%; SeqWait:
90.81 + 7.09%) (one-way ANOVA, F, 34 = 2.06, p = .14).
However, increasing deviations from RS1 due to cogni-
tive and behavioural state differences (X = [RS1,
TapMov, SeqMov]) produced significant reductions in
identification accuracy most notably for SeqMov
(TapMov: 88.79 + 7.57%; SeqMov: 83.85 + 10.35%) (one-
way ANOVA, F, 33 = 14.07, p = .00004).

To disentangle the role of cross-task from cross-day
effects, we compared cross-task (**'I, — *I) and same-
task identification (*I, — *I ) across days (Tables A.4
and A.1 respectively). For the pseudo-rest states
(X = [TapWait, SeqWait]), cross-task accuracy with RS1
decision rules produced a small but statistically signifi-
cant reduction relative to same-task identification
(ANOVA, train [RS1, Same] x condition [TapWait,
SeqWait], train * condition: F;,; = 4.14, p = .06; train:
Fi117=10.02, p =.00566; condition: F; ;7= .00001,
p = 1.00). The cross-task accuracy reduction was signifi-
cantly larger for the movement states (X = [TapMov,
SeqMov]) with a larger loss for SegqMov (ANOVA, Train
[RS, Same] x condition [TapMov, SeqMov],
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F1,7=43.94, p<.00001; condition: F; ;= 2.51, lowing aggregation, the mean residual cross-task/cross-
p = .13). day accuracy loss relative to same-task/cross-day identifi-

To disentangle the role of day specificity in
8811, — X1, we used multi-day aggregation (**'I, « **'I,
.. — *1,). Although aggregation reduced day specificity
with RS1 (Figure 5), this could have been achieved by
increasing specificity to the properties of RS1. Such an
‘overfitting’ to RS1 (i.e., increased task specificity) might
lower the accuracy of cross-task identification. Alterna-
tively, aggregation could have reduced both day and task
specificities and thus increase the accuracy of cross-task
identification. Consistent with this latter possibility,
aggregation increased cross-task accuracy to the pseudo-
rest states (TapWait, SeqWait) in a comparable manner
to same-task accuracy (Figure 10b) (ANOVA: condition
[RS1, TapWait, SeqWait] x type [1-day, 2-day, 3-day];
condition * type: F, 43 = 0.52, p=.72; condition: F,
34 = 2.44, p = .10; type: F,, 34 = 21.63, p < .00001). This
was particularly striking because aggregation (i.e., related
to day specificity) produced a relatively larger increase in

cation with RS1 was only ~3%. Aggregation also
increased cross-task accuracy to the movement states
(TapMov, SeqMov) (ANOVA: condition [RS1, TapMov,
SeqMov] x type [1-day, 2-day, 3-day]; condition * type:
F,, ¢ =135 p=.26; condition: F, 3, =13.04,
p = .00006; type: F, 34 =29.33, p <.00001). Following
aggregation, the mean residual cross-task/cross-day dif-
ference was less than ~10% for the movement states.
Similar to the same-task correlations described above
(Figure 9b), the individual cross-task (1-day) accuracy in
each of these task states showed a statistical significant
correlation to the corresponding cross-day accuracy in
RS1 (Figure 10c) (threshold: p < .05/4; TapWait: r[17]
=948, p < .00001; SeqWait: r[17] =.771, p = .00018;
TapMov: r{17] = .897, p < .00001; SeqMov: r[17] = .631,
p = .00503). The correlation coefficients were particularly
high for both Tap states (TapWait and TapMov) as com-
pared with the Seq states (SeqWait and SeqMov).
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Furthermore, the scatter plots suggested that the rela-
tively lower cross-task/cross-day accuracy for SeqMov
was driven by the low generalization of a few individuals.

In summary, decision rules trained on RS1 on a single
day could identify individuals from samples from states
that verifiably differed from RS1 to differing extents.
Importantly, aggregated training solely on RS1 lead to
increases in identification accuracy on samples from
these non-rest task states. Unlike the full-feature set,
applying the cross-task scheme RSIIP — XIq to the mono-
band and mono-location feature sets produced large
accuracy reductions (Figure S4). This confirmed that the
conjoint role of features from more than one frequency
band and spatial zone was crucial to obtain high cross-
task/cross-day identification accuracy. Taken together,
the cross-task/cross-day robustness of person identifica-
tion with a distributed feature-set was consistent with the
properties of a configuration constrained by individual
neurophysiology, that is, a critical demand for change
classification.

4 | DISCUSSION

Flucidating how neural oscillatory dynamics during ‘task
free’ rest reveal individual-specific neurophysiological
organization is an important objective for cognitive neu-
roscience. However, despite the extended analysis of RS-
EEG power and individual differences here, the narrow
motivation for this study was an analytical (rather than
neuroscientific) challenge posed by RS based tracking,
namely, robust and individualized inferences about inter-
day change that screen out irrelevant cognitive variation.
With this analytical objective, we contribute a novel for-
mulation of this general issue, namely, change classifica-
tion, and a possible solution approach that leverages the
individual distinctiveness of RS activity, where decision
rules for person identification serve as a tool for cross-day
change classification. Consistent with the goal of robust
change classification despite cognitive variability, these
decision rules were capable of cross-day/cross-task per-
son identification with a low cross-day loss (Figures 5
and 10), despite inter-day cognitive variation of different
magnitudes (Figure 8). Rather than being idiosyncratic
effects, the information represented by the decision rules
demonstrated robust day-general characteristics under
aggregation (Figures 3, 5 and 10) and an organization
suggesting a basis in individual neurophysiology
(Figures 6, 7 and 9). These results provide a proof of con-
cept that RS change classification might be addressable
in a general manner, to complement approaches based
on domain-specific RS biomarkers (Hohenfeld et al.,
2018; Rashid & Calhoun, 2020; Woo et al., 2017).

Change classification requires a decision rule to trans-
late RS activity into an NP+/NP— decision but does not
specify how a suitable decision rule is to be obtained.
Therefore, suitable decision rules could conceivably be
obtained with other approaches that do not involve either
person identification or machine learning (i.e., inductive
inferences). It is hence worth considering when person
identification might (and might not) be a relevant strat-
egy. We suggest below that (i) change classification
requires a change-informed representation and (ii) person
identification might be particularly relevant when such a
representation is not known a priori.

4.1 | Change evaluation versus change-
informed representation

A plausible alternative approach to change classification
is to directly evaluate inter-day RS activity, for instance,
with a dissimilarity measure (as in Figure 4b) or an
assessment of inter-day variability within a test-retest
reliability framework (Bijsterbosch et al., 2017; Cox
et al., 2018; Noble et al., 2019; Postema et al., 2019). The
obtained score could then be converted into a change
classification decision, for example, a suitably high inter-
day reliability (or similarity) might suggest an NP— cate-
gorization (i.e., no neurophysiological change), whereas a
low reliability (or similarity) would suggest an NP+ cate-
gorization. However, such evaluation-based approaches
would be incomplete without specifying how individual
RS activity is to be represented for this evaluation, as illus-
trated by the following analogy to object recognition.
Consider images depicting the same object X from
Days 1 and 2 (Figure 11a) represented by filled pixel loca-
tions (i.e., features). A simple measure of inter-day reli-
ability is whether the filled pixels on Day 1 are also
reliably filled on Day 2. Scenario A would have a high
feature-level reliability as most filled pixels on Day 1 are
also filled on Day 2 (suggesting NP—), whereas Scenario
B would have a low reliability (suggesting NP+). How-
ever, these change classification decisions are faulty
inferences about the overall shape of the depicted object.
In Scenario A, the object’s shape differs between days
(i.e., analogous to NP+), although in Scenario B, the
object’s shape is unchanged despite a large change in ori-
entation (i.e., analogous to NP— as with TapWait,
SeqWait, TapMov, SeqMov). The faulty inference can be
attributed to the representation of the object (i.e., list of
filled pixel locations) as its format is uninformed by the
possible types of change. However, an ideal change-
informed representation of object X’s shape would be
invariant to irrelevant rotations as in Scenario
B (analogous to cognitive state variation), while being
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Test-retest reliability versus individual re-identification. (a) Object X (red) is defined by the configuration of filled and

unfilled pixels. In Scenario A, most pixels of object X from Day 1 are filled on Day 2 except pixels within the left dotted circle. These few
changed pixels prevent object X from being re-identified on Day 2 as its shape is confusable with object Y. In Scenario B, on Day 2, object X
is rotated relative to its orientation on Day 1 thus filled pixels on Day 1 are not reliably filled on Day 2. However, accounting for the
orientation differences allows object X to be distinguished in shape from Y on Day 2. Thus, high inter-day reliability in pixel state does not
imply the same for object identity and vice versa. (b) Schematic of a one-to-many mapping between shape and representations that are

uninformed about possible orientation changes (left panel); and a hypothetical one-to-one relationship associated with a change-informed

representation, which is invariant to irrelevant orientation changes (right panel)

sensitive to true shape changes as in Scenario
A (analogous to neurophysiological change) (Figure 11b).

Similarly, our approach was based on the view that
RS change classification requires a change-informed rep-
resentation of individual’s RS activity for evaluation. Ide-
ally, this representation would be sensitive to
neurophysiological changes (NP+) but invariant to inci-
dental cognitive variation (NP—). In analytical terms, we
assume that there is a one-to-many mapping between an
individual’s neurophysiological phenotype and the multi-
ple functional neural activity states (including at rest)
that are wuniquely configured by that phenotype
(i.e., NP — [activity states]). Hypothetically, this one-to-
many mapping (i.e., NP — [activity states]) could be
analysed to extract a one-fo-one mapping between an

individual’s neurophysiology to a unique configuration of
constraints shared by the many activity states (i.e., NP —
[constrained configuration] — [activity states])
(Figure 11b). Such a constraint configuration could serve
as a change-informed representation as it would be
invariant to incidental cognitive variation (NP—) but sen-
sitive to neurophysiological change (NP+).

Such a change-informed representation might not be
known a priori. In such a scenario, training a decision
rule for person identification (Figures 1c and 3a) could
serve as a data-driven procedure to select such a change-
informed representation. The term ‘representation’ is
used here to refer to how information is carried by a con-
figuration of features (e.g., by the specific assignment of
weights to different features) rather than in the sense of
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‘feature selection” (Guyon et al., 2002; Guyon &
Elisseeff, 2003), that is, to find a subset of features that
carry relevant information.

4.2 | Person identification to select
change-informed representations

Samples of same-day activity from (1) other individuals
(not-S) and (2) person S serve as examples of the possible
types of change, namely, NP+ and NP—, respectively.
Therefore, training a decision rule on these examples
(using machine learning) was a mechanism to select a
putative change-informed representation.

As a simple analogy, in Figure 11a, object X’s shape
can be distinguished from that of object Y on Day 1 based
on a few critical pixels (circled). In Scenario A, this pixel
subset from Day 1 is unfilled on Day 2 implying that X’s
identity on Day 2 is now potentially confusable with
object Y, which in turn suggests a possible cross-day
change in shape (NP+). Thus, inter-individual compari-
sons can help to select critical feature relationships to
represent an object X’s identity, which is based on the
object’s shape. The critical pixels are unchanged across
days in Scenario B suggesting an unchanged identity and
hence shape (NP—). However, this representation suffers
the limitation of being uninformed about rotations, as
described above with the full list of filled pixels. There-
fore, selecting a representation that was robust to inci-
dental change was crucial.

Despite using an analogy of RS activity to a static
object, training for person identification on same-day
activity involved an assumption about dynamics and
timescales. Each same-day measurement was segmented
into 2-s non-overlapping activity samples. This inter-
sample variability on short timescales (i.e., between the
samples acquired within seconds/minutes of each other
on the same day) was assumed to contain information
about how RS activity could change in the absence of
neurophysiological change (i.e., NP—). Therefore, suc-
cessful cross-day identification was predicated on
whether inter-sample differences on short timescales on
the order of seconds were informative about inter-sample
differences on long timescales (i.e., hours and days apart).
Using moment-to-moment variability to ‘account’ for
incidental RS differences was critical to bypass limits on
available information. The cognitive state during rest
measurements is related to experimental context and
instructions (Duncan & Northoff, 2013; Kawagoe
et al., 2018). However, beyond the assumption that par-
ticipants were awake, we did not model the participant’s
cognitive state, for example, using participant’s self-
reported assessments of their cognitive state during the

RS measurement, sleepiness or coffee consumptions
(Diaz et al., 2013; Guerra-Carrillo et al., 2014).

The individuality of RS activity has been studied with
a variety of objectives, such as biometric identification
(Campisi & Rocca, 2014; Gui et al., 2014; Valizadeh
et al., 2019) and general questions related to the neural
basis of individual differences and trait-identification
(Demuru et al., 2017; Finn et al, 2017; Gratton
et al., 2018; Smit et al., 2005; Smit et al., 2006). Consistent
with these studies, our results also demonstrate the high
distinctiveness of individual RS activity. Person identifi-
cation was possible significantly above random chance
from two-second snapshots of the power spectra at rest
within the same day, as well as across days and tasks
(Tables A.1, A.2 and A.4). However, in the current study,
person identification served as a procedure to select
change-informed representations. Hence, it was not suffi-
cient to identify a person, for example, with a (dis)simi-
larity-based measure that does not provide such a
representation (e.g., Finn et al., 2015). Furthermore, the
modulation of cross-day accuracy (i.e., accuracy loss) was
a key indicator and classification above random chance
was not itself informative about cross-day change. For
these reasons, a machine learning approach was valuable
as a principled method to obtain an explicit representa-
tion of the individual to be used for change classification.

4.3 | Trade-offs of data-driven selection
of representations

Selecting representations based on a functional criterion
(i.e., the ability to distinguish S from not-S) involved cer-
tain trade-offs.

There was no guarantee that the selected representa-
tions would be linked to individual neurophysiology
rather than arbitrary day-specific properties. Even in the
toy example (Figure 11a), the objects differ in colour (red-
= object X, blue = object Y), but using this feature to
assess inter-day change would be uninformative about
shape changes (as in Scenario A). Therefore, establishing
the empirical soundness of this approach was critical.
Because cognitive variability across days is difficult to
establish, the high identification accuracy with RS1 could
have been attributed to highly motivated and instruction-
compliant participants rather than the neural characteris-
tics of the rest state. However, the Tap and Sequence
tasks provided verifiable within-subject examples of
states that deviated from rest in order to assess the gener-
ality of RS-based inferences. Additional validity checks
were provided by the battery of empirical tests, for exam-
ple, the effects of aggregated training; assessing day ver-
sus measurement-specificity; and the weight distribution.
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An important boundary condition is that high same-day
accuracy for person identification is not sufficient to
obtain a change-informed representation as shown by the
poor cross-day accuracy with mono-band/mono-location
feature subsets (Figures 3 and 6, Figure S4).

As an individual’s identity is defined relative to other
individuals in the studied group, an individual’s repre-
sentation would vary depending on the diversity of the
group and properties of the most-similar individuals
(as illustrated by the confusion matrix and inter-
individual clustering in Figure 5). Furthermore, features
shared by all individuals would be excluded. For exam-
ple, in a study of the heritability of individual RS-
connectivity properties with magnetoencephalography
(MEG) (Demuru et al., 2017), the explicit removal of con-
nectivity characteristics shared by all individuals in the
group significantly improved individual identification.
Thus, downweighting the role of shared features (explic-
itly or implicitly) would prevent changes to these shared
features from being detected.

Furthermore, selecting representations based on a
functional criterion enables considerable generality as
the criterion does not specify the kind of information
being represented. For instance, in our study, each
activity sample was defined by the power in the
canonical frequency bands. However, each sample could
alternatively be defined by, for example, the dynamic
connectivity estimated from the oscillatory phase
(Bonkhoff et al., 2021; Calhoun et al., 2014; Rosjat
et al., 2018; Rosjat et al., 2020). Exploring such exten-
sions to other forms of information and information
obtained from other imaging modalities is a key topic
for future studies.

44 | Outlook

Our results support the technical feasibility and potential
value of RS change classification to support the use of RS
to track neuroplastic change. Notwithstanding its trade-
offs, person identification suggests a powerful and conve-
nient strategy to select appropriate change-informed rep-
resentations to support change classification. We
assumed that individuals in the studied group did not
undergo extensive plastic changes. If individual identifi-
cation was not possible with longitudinal RS even with
such a group of healthy individuals over a period of
5 days, then the merits of using RS as a tracking indicator
would seem to require critical re-evaluation especially for
tracking over longer periods of time and with populations
where such neuroplastic changes would be expected.
Prior studies have found changes to the power spectrum
with aging (Chiang et al., 2011; Knyazeva et al., 2018;
van Albada et al., 2010; Voytek et al., 2015), for example,

age-related reductions in the frequencies of the alpha and
beta band peaks. Voytek et al. (2015) suggest that such
changes might indicate a change in the 1/f baseline possi-
bly due to increased physiological noise with aging (also
see Demuru & Fraschini, 2020). Furthermore, systematic
longitudinal changes in the power spectrum have been
observed following stroke (Giaquinto et al., 1994; Saes
et al., 2020). Thus, implementing change classification to
support longitudinal RS in clinical populations is an
important future priority.

ACKNOWLEDGEMENTS

This work was funded by the University of Cologne
Emerging Groups Initiative (CONNECT group)
implemented into the Institutional Strategy of the Uni-
versity of Cologne and the German Excellence Initiative
and by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation)—Project-ID 431549029,
SFB 1451 and 491111487. SD gratefully acknowledges
support from the German Research Foundation
(DA 1953/5-2). We thank Hannah Kirsten, Alexandra
Kurganova and members of the INM-3 for their valuable
assistance in data acquisition.

CONFLICT OF INTEREST
None.

AUTHOR CONTRIBUTION

Maximilian Hommelsen: Conceptualization, Method-
ology, Data acquisition, Software, Validation, Formal
analysis, Writing: Original draft, Review & Editing, Visu-
alization. Shivakumar Viswanathan: Conceptualiza-
tion, Methodology, Software, Validation, Formal
analysis, Writing: Original Draft, Review & Editing, Visu-
alization. Silvia Daun: Conceptualization, Writing:
Review & Editing, Visualization, Supervision, Project
administration, Funding acquisition.

PEER REVIEW
The peer review history for this article is available at
https://publons.com/publon/10.1111/ejn.15673.

DATA AVAILABILITY STATEMENT

The data and code that support the findings of this study
are available on request from the corresponding author.
The data are not publicly available due to privacy or ethi-
cal restrictions.

ORCID

Maximilian Hommelsen ‘© https://orcid.org/0000-0003-
1972-0465

Shivakumar Viswanathan ‘© https://orcid.org/0000-0002-
7513-3778

Silvia Daun ‘2 https://orcid.org/0000-0001-7342-1015


https://publons.com/publon/10.1111/ejn.15673
https://orcid.org/0000-0003-1972-0465
https://orcid.org/0000-0003-1972-0465
https://orcid.org/0000-0003-1972-0465
https://orcid.org/0000-0002-7513-3778
https://orcid.org/0000-0002-7513-3778
https://orcid.org/0000-0002-7513-3778
https://orcid.org/0000-0001-7342-1015
https://orcid.org/0000-0001-7342-1015

HOMMELSEN ET AL.

WILEYL*®

EJ N European Journal of Neuroscience FENS

REFERENCES

Alegre, M., de Gurtubay, I. G., Labarga, A., Iriarte, J.,
Malanda, A., & Artieda, J. (2004). Alpha and beta oscillatory
activity during a sequence of two movements. Clinical Neuro-
physiology, 115(1), 124-130. https://doi.org/10.1016/S1388-
2457(03)00311-0

Barry, R. J., Clarke, A. R., Johnstone, S. J., Magee, C. A, &
Rushby, J. A. (2007). EEG differences between eyes-closed and

eyes-open resting conditions. Clinical Neurophysiology,
118(12), 2765-2773. https://doi.org/10.1016/j.clinph.2007.
07.028

Benjamin, C., Lieberman, D. A., Changl, M., Ofen, N., Whitfield-
Gabrieli, S., Gabrieli, J. D. E., & Gaab, N. (2010). The influence
of rest period instructions on the default mode network. Fron-
tiers in Human Neuroscience, 4(December), 1-9. https://doi.
org/10.3389/fnhum.2010.00218

Bijsterbosch, J., Harrison, S., Duff, E., Alfaro-Almagro, F.,
Woolrich, M., & Smith, S. (2017). Investigations into within-
and between-subject resting-state amplitude variations.
NeuroImage, 159(July), 57-69. https://doi.org/10.1016/].
neuroimage.2017.07.014

Bishop, C. M. (2006). Pattern recognition and machine learning.
Springer  New  York.  https://link.springer.com/book/
9780387310732

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995).
Functional connectivity in the motor cortex of resting human
brain using echo-planar MRI. Magnetic Resonance in Medicine,
34(4), 537-541. https://doi.org/10.1002/mrm.1910340409

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E.
(2008). Fast unfolding of communities in large networks. Jour-
nal of Statistical Mechanics: Theory and Experiment, 2008(10),
P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008

Blum, A., Kalai, A. & Langford, J. (1999). Proceedings of the twelfth
Annual ACM Conference on Computational Learning Theory

Boersma, M., Smit, D. J. A., de Bie, H. M. A., van Baal, G. C. M.,
Boomsma, D. I, de Geus, E. J. C., Delemarre-van de
Waa, H. A., & Stam, C. J. (2011). Network analysis of resting
state EEG in the developing young brain: Structure comes
with maturation. Human Brain Mapping, 32(3), 413-425.
https://doi.org/10.1002/hbm.21030

Bonkhoff, A. K., Hope, T., Bzdok, D., Guggisberg, A. G,
Hawe, R. L., Dukelow, S. P., Rehme, A. K., Fink, G. R,
Grefkes, C., & Bowman, H. (2020). Bringing proportional
recovery into proportion: Bayesian modelling of post-stroke
motor impairment. Brain, 143(7), 1-18. https://doi.org/10.
1093/brain/awaal46

Bonkhoff, A. K., Schirmer, M. D., Bretzner, M., Etherton, M.,
Donahue, K., Tuozzo, C., Nardin, M., Giese, A. K., Wu, O.,
Calhoun, D. V., & Grefkes, C. (2021). Abnormal dynamic func-
tional connectivity is linked to recovery after acute ischemic
stroke. Human Brain Mapping, 42(January), 1-14. https://doi.
org/10.1002/hbm.25366

Boser, B. E., Guyon, I. M. & Vapnik, V. N. (1992). A training algo-
rithm for optimal margin classifiers. Proceedings of the fifth
annual workshop on Computational learning theory,
pp. 144-152. https://doi.org/10.1145/130385.130401

Box, G. E. P., & Andersen, S. L. (1955). Permutation theory in the
derivation of robust criteria and the study of departures from
assumption. Journal of the Royal Statistical Society: Series B

(Methodological), 17(1), 1-26. https://doi.org/10.1111/j.2517-
6161.1955.tb00176.x

Brandmaier, A. M., Wenger, E., Bodammer, N. C., Kiihn, S,
Raz, N., & Lindenberger, U. (2018). Assessing reliability in
neuroimaging research through intra-class effect decomposi-
tion (ICED). eLife, 7, 1-19. https://doi.org/10.7554/elife.35718

Buckner, R. L., & DiNicola, L. M. (2019). The brains default net-
work: Updated anatomy, physiology and evolving insights.
Nature Reviews Neuroscience, 20(10), 593-608. https://doi.org/
10.1038/s41583-019-0212-7

Cabeza, R., Albert, M., Belleville, S., Craik, F. I. M., Duarte, A.,
Grady, C. L., Lindenberger, U., Nyberg, L., Park, D. C., Reuter-
Lorenz, P. A., Rugg, M. D., Steffener, J., & Rajah, M. N. (2018).
Maintenance, reserve and compensation: The cognitive neuro-
science of healthy ageing. Nature Reviews Neuroscience, 19(11),
701-710. https://doi.org/10.1038/s41583-018-0068-2

Calhoun, V. D., Miller, R., Pearlson, G., & Adali, T. (2014). The
chronnectome: Time-varying connectivity networks as the
next frontier in fMRI data discovery. Neuron, 84(2), 262-274.
https://doi.org/10.1016/j.neuron.2014.10.015

Campisi, P., & Rocca, D. L. (2014). Brain waves for automatic
biometric-based user recognition. IEEE Transactions on Infor-
mation Forensics and Security, 9(5), 782-800. https://doi.org/
10.1109/TIFS.2014.2308640

Carino-Escobar, R. I., Carrillo-Mora, P., Valdés-Cristerna, R.,
Rodriguez-Barragan, M. A., Hernandez-Arenas, C,,
Quinzanos-Fresnedo, J., Galicia-Alvarado, M. A., & Cantillo-
Negrete, J. (2019). Longitudinal analysis of stroke patients
brain rhythms during an intervention with a brain-computer
interface. Neural Plasticity, 2019, 1-11. https://doi.org/10.1155/
2019/7084618

Cassani, R., Estarellas, M., San-Martin, R., Fraga, F. J., & Falk, T. H.
(2018). Systematic review on resting-state EEG for Alzheimers
disease diagnosis and progression assessment. Disease Markers,
2018, 1-26. https://doi.org/10.1155/2018/5174815

Cassim, F., Szurhaj, W., Sediri, H., Devos, D., Bourriez, J. L.,
Poirot, 1., Derambure, P., Defebvre, L., & Guieu, J. D. (2000).
Brief and sustained movements: Differences in event-related
(de)synchronization (ERD/ERS) patterns. Clinical Neurophysi-
ology, 111(11), 2032-2039. https://doi.org/10.1016/S1388-2457
(00)00455-7

Chiang, A. K. I, Rennie, C. J., Robinson, P. A., van Albada, S. J., &
Kerr, C. C. (2011). Age trends and sex differences of alpha
rhythms including split alpha peaks. Clinical Neurophysiology,
122(8), 1505-1517. https://doi.org/10.1016/j.clinph.2011.01.040

Cox, R., Schapiro, A. C., & Stickgold, R. (2018). Variability and sta-
bility of large-scale cortical oscillation patterns. Network Neu-
roscience, 2(4), 481-512. https://doi.org/10.1162/netn_a_00046

Damoiseaux, J. S., & Greicius, A. M. D. (2009). Greater than the
sum of its parts: A review of studies combining structural con-
nectivity and resting-state functional connectivity. Brain Struc-
ture and Funtion, 213, 525-533. https://doi.org/10.1007/
$00429-009-0208-6

Davis, J. & Goadrich, M. (2006). The relationship between
Precision-Recall and ROC curves. ICML ’06: Proceedings of
the 23rd International Conference on Machine Learning,
233-240. https://doi.org/10.1145/1143844.1143874

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source tool-
box for analysis of single-trial EEG dynamics including


https://doi.org/10.1016/S1388-2457(03)00311-0
https://doi.org/10.1016/S1388-2457(03)00311-0
https://doi.org/10.1016/j.clinph.2007.07.028
https://doi.org/10.1016/j.clinph.2007.07.028
https://doi.org/10.3389/fnhum.2010.00218
https://doi.org/10.3389/fnhum.2010.00218
https://doi.org/10.1016/j.neuroimage.2017.07.014
https://doi.org/10.1016/j.neuroimage.2017.07.014
https://link.springer.com/book/9780387310732
https://link.springer.com/book/9780387310732
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1002/hbm.21030
https://doi.org/10.1093/brain/awaa146
https://doi.org/10.1093/brain/awaa146
https://doi.org/10.1002/hbm.25366
https://doi.org/10.1002/hbm.25366
https://doi.org/10.1145/130385.130401
https://doi.org/10.1111/j.2517-6161.1955.tb00176.x
https://doi.org/10.1111/j.2517-6161.1955.tb00176.x
https://doi.org/10.7554/elife.35718
https://doi.org/10.1038/s41583-019-0212-7
https://doi.org/10.1038/s41583-019-0212-7
https://doi.org/10.1038/s41583-018-0068-2
https://doi.org/10.1016/j.neuron.2014.10.015
https://doi.org/10.1109/TIFS.2014.2308640
https://doi.org/10.1109/TIFS.2014.2308640
https://doi.org/10.1155/2019/7084618
https://doi.org/10.1155/2019/7084618
https://doi.org/10.1155/2018/5174815
https://doi.org/10.1016/S1388-2457(00)00455-7
https://doi.org/10.1016/S1388-2457(00)00455-7
https://doi.org/10.1016/j.clinph.2011.01.040
https://doi.org/10.1162/netn_a_00046
https://doi.org/10.1007/s00429-009-0208-6
https://doi.org/10.1007/s00429-009-0208-6
https://doi.org/10.1145/1143844.1143874

= | wiLEy N

HOMMELSEN ET AL.

independent component analysis. Journal of Neuroscience
Methods, 134(1), 9-21. https://doi.org/10.1016/j.jneumeth.
2003.10.009

Demuru, M., & Fraschini, M. (2020). EEG fingerprinting: Subject-
specific signature based on the aperiodic component of power
spectrum. Computers in Biology and Medicine, 120(April),
103748. https://doi.org/10.1016/j.compbiomed.2020.103748

Demuru, M., Gouw, A. A., Hillebrand, A., Stam, C. J., van
Dijk, B. W., Scheltens, P., Tijms, B. M., Konijnenberg, E., ten
Kate, M., den Braber, A., Smit, D. J. A., Boomsma, D. I, &
Visser, P. J. (2017). Functional and effective whole brain con-
nectivity using magnetoencephalography to identify monozy-
gotic twin pairs. Scientific Reports, 7(1), 1-11. https://doi.org/
10.1038/s41598-017-10235-y

Diaz, B. A., van der Sluis, S., Moens, S., Benjamins, J. S,
Migliorati, F., Stoffers, D., Den Braber, A., Poil, S.-S,
Hardstone, R., Van’t Ent, D., Boomsma, D. I., de Geus, E.,
Mansvelder, H. D., van Someren, E. J. W., & Linkenkaer-
Hansen, K. (2013). The Amsterdam resting-state questionnaire
reveals multiple phenotypes of resting-state cognition. Fron-
tiers in Human Neuroscience, 7(JUL, 1-15. https://doi.org/10.
3389/fnhum.2013.00446

Diedrichsen, J., & Kriegeskorte, N. (2017). Representational models:
A common framework for understanding encoding, pattern-
component, and representational-similarity analysis. PLoS
Computational Biology, 13(4), €1005508. https://doi.org/10.
1371/journal.pcbi.1005508

Dimsdale-Zucker, H. R., & Ranganath, C. (2019). Representational
similarity analyses: A practical guide for functional MRI appli-
cations. Handbook of Behavioral Neuroscience, 28, 509-525.
https://doi.org/10.1016/B978-0-12-812028-6.00027-6

Duncan, N. W., & Northoff, G. (2013). Overview of potential proce-
dural and participant-related confounds for neuroimaging of
the resting state. Journal of Psychiatry and Neuroscience, 38(2),
84-96. https://doi.org/10.1503/jpn.120059

Erbil, N., & Ungan, P. (2007). Changes in the alpha and beta ampli-
tudes of the central EEG during the onset, continuation, and
offset of long-duration repetitive hand movements. Brain
Research, 1169(2004), 44-56. https://doi.org/10.1016/j.brainres.
2007.07.014

Finn, E. S., Scheinost, D., Finn, D. M., Shen, X,
Papademetris, X., & Constable, R. T. (2017). Can brain state be
manipulated to emphasize individual differences in functional
connectivity? Neurolmage, 160(March), 140-151. https://doi.
org/10.1016/j.neuroimage.2017.03.064

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J.,
Chun, M. M., Papademetris, X., & Constable, R. T. (2015).
Functional connectome fingerprinting: Identifying individuals
using patterns of brain connectivity. Nature Neuroscience,
18(11), 1664-1671. https://doi.org/10.1038/nn.4135

Giaquinto, S., Cobianchi, A., Macera, F., & Nolfe, G. (1994). EEG
recordings in the course of recovery from stroke. Stroke,
25(11), 2204-2209. https://doi.org/10.1161/01.STR.25.11.2204

Gonzalez-Castillo, J., Kam, J. W. Y., Colin, H W. &
Bandettini, P. A. (2021). How to interpret resting-state fMRI.
Ask your Participants, 41, Box 1(6), 1-19. https://doi.org/10.
1523/INEUROSCI.1786-20.2020

Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J.,
Greene, D. J., Berg, J. J., Ortega, M., Hoyt-Drazen, C.,

Gratton, C., Sun, H., Hampton, J. M., Coalson, R,
Nguyen, A. L., McDermott, K., Shimony, J., Snyder, A.,
Schlaggar, B., Petersen, S., Nelson, S. M., &
Dosenbach, N. U. F. (2017). Precision functional mapping of
individual human brains. Neuron, 95(4), 791-807¢7. https://
doi.org/10.1016/j.neuron.2017.07.011

Gratton, C., Laumann, T. O., Nielsen, A. N., Greene, D. J,
Gordon, E. M., Gilmore, A. W., Nelson, S. M., Coalson, R. S.,
Snyder, A. Z., Schlaggar, B. L., Dosenbach, N. U. F.,, &
Petersen, S. E. (2018). Functional brain networks are domi-
nated by stable group and individual factors, not cognitive or
daily variation. Neuron, 98, 439-452. https://doi.org/10.1016/j.
neuron.2018.03.035 e5

Grefkes, C., & Fink, G. R. (2020). Recovery from stroke: Current
concepts and future perspectives. Neurological Research and
Practice, 2(1), 1-10. https://doi.org/10.1186/s42466-020-00060-6

Guerra-Carrillo, B., MacKey, A. P., & Bunge, S. A. (2014). Resting-
state fMRI: A window into human brain plasticity. The Neuro-
scientist, 20(5), 522-533. https://doi.org/10.1177/
1073858414524442

Gui, Q., Jin, Z., & Xu, W. (2014). Exploring EEG-based biometrics
for user identification and authentication. 2014 IEEE Signal
Processing in Medicine and Biology Symposium, IEEE SPMB
2014 - Proceedings, 1-6. https://doi.org/10.1109/SPMB.2014.
7002950

Guyon, I, & Elisseeff, A. (2003). An introduction to variable and
feature selection. The Journal of Machine Learning Research, 3,
1157-1182. Retrieved from http://dl.acm.org/citation.cfm?id=
944968

Guyon, 1., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selec-
tion for cancer classification using support vector machines.
Machine Learning, 46(1), 389-422. https://doi.org/10.1023/A:
1012487302797

Haufe, S., Meinecke, F., Gorgen, K., Déhne, S., Haynes, J. D,
Blankertz, B., & BieBmann, F. (2014). On the interpretation of
weight vectors of linear models in multivariate neuroimaging.
NeuroImage, 87, 96-110. https://doi.org/10.1016/j.neuroimage.
2013.10.067

Haynes J. D. (2015). A primer on pattern-based approaches to fMRI:
Principles, pitfalls, and perspectives. Neuron, 87, (2), 257. -270.
https://doi.org/10.1016/j.neuron.2015.05.025

Hermundstad, A. M., Bassett, D. S., Brown, K. S., Aminoff, E. M.,
Clewett, D., Freeman, S., Frithsen, A., Johnson, A.,
Tipper, C. M., Miller, M. B., Grafton, S. T., & Carlson, J. M.
(2013). Structural foundations of resting-state and task-based
functional connectivity in the human brain. Proceedings of the
National Academy of Sciences of the United States of America,
110, 6169-6174. https://doi.org/10.1073/pnas.1219562110

Hoenig, M. C., Bischof, G. N., Seemiller, J., Hammes, J., Kukolja, J.,
Onur, O. A., Jessen, F., Fliessbach, K., Neumaier, B.,
Fink, G. R., van Eimeren, T., & Drzezga, A. (2018). Networks
of tau distribution in Alzheimers disease. Brain, 141(January),
568-581. https://doi.org/10.1093/brain/awx353

Hohenfeld, C., Werner, C. J., & Reetz, K. (2018). Resting-state con-
nectivity in neurodegenerative disorders: Is there potential for
an imaging biomarker? NeuroImage: Clinical, 18(November
2017), 849-870. https://doi.org/10.1016/j.nicl.2018.03.013

Huang, X., Altahat, S., Tran, D., & Sharma, D. (2012). Human iden-
tification with electroencephalogram (EEG) signal processing.


https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.compbiomed.2020.103748
https://doi.org/10.1038/s41598-017-10235-y
https://doi.org/10.1038/s41598-017-10235-y
https://doi.org/10.3389/fnhum.2013.00446
https://doi.org/10.3389/fnhum.2013.00446
https://doi.org/10.1371/journal.pcbi.1005508
https://doi.org/10.1371/journal.pcbi.1005508
https://doi.org/10.1016/B978-0-12-812028-6.00027-6
https://doi.org/10.1503/jpn.120059
https://doi.org/10.1016/j.brainres.2007.07.014
https://doi.org/10.1016/j.brainres.2007.07.014
https://doi.org/10.1016/j.neuroimage.2017.03.064
https://doi.org/10.1016/j.neuroimage.2017.03.064
https://doi.org/10.1038/nn.4135
https://doi.org/10.1161/01.STR.25.11.2204
https://doi.org/10.1523/JNEUROSCI.1786-20.2020
https://doi.org/10.1523/JNEUROSCI.1786-20.2020
https://doi.org/10.1016/j.neuron.2017.07.011
https://doi.org/10.1016/j.neuron.2017.07.011
https://doi.org/10.1016/j.neuron.2018.03.035
https://doi.org/10.1016/j.neuron.2018.03.035
https://doi.org/10.1186/s42466-020-00060-6
https://doi.org/10.1177/1073858414524442
https://doi.org/10.1177/1073858414524442
https://doi.org/10.1109/SPMB.2014.7002950
https://doi.org/10.1109/SPMB.2014.7002950
http://dl.acm.org/citation.cfm?id=944968
http://dl.acm.org/citation.cfm?id=944968
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1016/j.neuroimage.2013.10.067
https://doi.org/10.1016/j.neuroimage.2013.10.067
https://doi.org/10.1016/j.neuron.2015.05.025
https://doi.org/10.1073/pnas.1219562110
https://doi.org/10.1093/brain/awx353
https://doi.org/10.1016/j.nicl.2018.03.013

HOMMELSEN ET AL.

WILEYL*

EJ N European Journal of Neuroscience FENS

2012 International Symposium on Communications and Infor-
mation Technologies, ISCIT 2012, 1021-1026. https://doi.org/
10.1109/ISCIT.2012.6380841

Huber, P. J. (1981). Robust statistics. In Advances in mathematics
(Vol. 60). John Wiley & Sons, Inc. https://doi.org/10.1002/
0471725250

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A,,
Calhoun, V. D., Corbetta, M., Penna, S. D., Duyn, J. H.,
Glover, G. H., Gonzalez-Castillo, J., Handwerker, D. A,
Keilholz, S., Kiviniemi, V., Leopold, D. A., de Pasquale, F.,
Sporns, O., Walter, M., & Chang, C. (2013). Dynamic func-
tional connectivity: Promise, issues, and interpretations.
Neurolmage, 80, 360-378. https://doi.org/10.1016/j.
neuroimage.2013.05.079

Kawagoe, T., Onoda, K., & Yamaguchi, S. (2018). Different pre-
scanning instructions induce distinct psychological and resting
brain states during functional magnetic resonance imaging.
European Journal of Neuroscience, 47(1), 77-82. https://doi.
org/10.1111/ejn.13787

Kehagias, A. (2021). Community Detection Toolbox, (https://www.
mathworks.com/matlabcentral/fileexchange/45867-
community-detection-toolbox), =~ MATLAB  Central File
Exchange.

Knyazeva, M. G., Barzegaran, E., Vildavski, V. Y., & Demonet, J.-F.
(2018). Aging of human alpha rhythm. Neurobiology of Aging,
69, 261-273. https://doi.org/10.1016/j.neurobiolaging.2018.
05.018

Laumann, T. O., Gordon, E. M., Adeyemo, B., Snyder, A. Z.,
Joo, S. J., Chen, M. Y., Gilmore, A. W., McDermott, K. B.,
Nelson, S. M., Dosenbach, N. U. F., Schlaggar, B. L.,
Mumford, J. A., Poldrack, R. A., & Petersen, S. E. (2015). Func-
tional system and areal organization of a highly sampled indi-
vidual human brain. Neuron, 87(3), 657-670. https://doi.org/
10.1016/j.neuron.2015.06.037

Lim, J., Wu, W. c,, Wang, J., Detre, J. A., Dinges, D. F., & Rao, H.
(2010). Imaging brain fatigue from sustained mental workload:
An ASL perfusion study of the time-on-task effect.
Neurolmage, 49(4), 3426-3435. https://doi.org/10.1016/j.
neuroimage.2009.11.020

Misic, B., Betzel, R. F., de Reus, M. A., van den Heuvel, M. P.,
Berman, M. G., McIntosh, A. R., & Sporns, O. (2016). Net-
work-level structure-function relationships in human neocor-
tex. Cerebral Cortex, 26(7), 3285-3296. https://doi.org/10.1093/
cercor/bhw089

Newbold, D. J., Laumann, T. O., Hoyt, C. R., Hampton, J. M,,
Montez, D. F., Raut, R. V. Ortega, M., Mitra, A,
Nielsen, A. N., Miller, D. B., Adeyemo, B., Nguyen, A. L.,
Scheidter, K. M., Tanenbaum, A. B., Van, A. N., Marek, S.,
Schlaggar, B. L., Carter, A. R., Greene, D. J,
Dosenbach, N. U. F. (2020). Plasticity and spontaneous activity
pulses in disused human brain circuits. Neuron, 0(0), 1-10.
https://doi.org/10.1016/j.neuron.2020.05.007

Noble, S., Scheinost, D., & Constable, R. T. (2019). A decade of test-
retest reliability of functional connectivity: A systematic
review and meta-analysis. NeuroImage, 203(December 2018),
116157. https://doi.org/10.1016/j.neuroimage.2019.116157

O’Brien, F., & Cousineau, D. (2014). Representing error bars in
within-subject designs in typical software packages. The Quan-
titative Methods for Psychology, 10(1), 56-67.

Oldfield, R. C. (1971). The assessment and analysis of handedness:
The Edinburgh inventory. Neuropsychologia, 9(1), 97-113.
https://doi.org/10.1016/0028-3932(71)90067-4

Pani, S. M., Ciuffi, M., Demuru, M., la Cava, S. M., Bazzano, G.,
DAloja, E., & Fraschini, M. (2020). Subject, session and task
effects on power, connectivity and network centrality: A
source-based EEG study. Biomedical Signal Processing and
Control, 59, 101891. https://doi.org/10.1016/j.bspc.2020.101891

Pedregosa, F., Weiss, R., Brucher, M., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., Blondel, M,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., &
Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12, 2825-2830.
Retrieved from http://jmlr.csail.mit.edu/papers/v12/
pedregosalla.html

Pfurtscheller, G., & da Silva, F. H. L. (1999). Event-related EEG/-
MEG synchronization and desynchronization: Basic principles.
Clinical Neurophysiology: Official Journal of the International
Federation of Clinical Neurophysiology, 110(11), 1842-
1857Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/
10576479. https://doi.org/10.1016/S1388-2457(99)00141-8

Poldrack, R. A. (2017). Precision neuroscience: Dense sampling of
individual brains. Neuron, 95(4), 727-729. https://doi.org/10.
1016/j.neuron.2017.08.002

Postema, M. C., de Marco, M., Colato, E., & Venneri, A. (2019). A
study of within-subject reliability of the brains default-mode
network. Magnetic Resonance Materials in Physics, Biology and
Medicine, 32(3), 391-405. https://doi.org/10.1007/s10334-018-
00732-0

Pritschet, L., Santander, T., Taylor, C. M., Layher, E., Yu, S,
Miller, M. B., Grafton, S., & Jacobs, E. G. (2020). Functional
reorganization of brain networks across the human menstrual
cycle. NeuroImage, 220(December 2019), 117091. https://doi.
org/10.1016/j.neuroimage.2020.117091

Rashid, B., & Calhoun, V. (2020). Towards a brain-based
predictome of mental illness. Human Brain Mapping, 41(12),
3468-3535. https://doi.org/10.1002/hbm.25013

Rehme, A. K., Fink, G. R., Cramon, D. Y. V., & Grefkes, C. (2011).
The role of the contralesional motor cortex for motor recovery
in the early days after stroke assessed with longitudinal fMRI.
Cerebral Cortex, 21(April, 4), 756-768. https://doi.org/10.1093/
cercor/bhq140

Rifkin, R., & Klautau, A. (2004). In defense of one-vs-all classifica-
tion. Journal of Machine Learning Research, 5, 2-6.

Rosjat, N., Liu, L., Wang, B. A, Popovych, S. Téth, T,
Viswanathan, S., Grefkes, C., Fink, G. R., & Daun, S. (2018).
Aging-associated changes of movement-related functional con-
nectivity in the human brain. Neuropsychologia, 117, 520-529.
https://doi.org/10.1016/j.neuropsychologia.2018.07.006

Rosjat, N., Wang, B. A, Liu, L., Fink, G. R., & Daun, S. (2020).
Stimulus transformation into motor action: Dynamic graph
analysis reveals a posterior-to-anterior shift in brain network
communication of older subjects. Human Brain Mapping,
42(May), 1-17. https://doi.org/10.1002/hbm.25313

Saes, M., Zandvliet, S. B., Andringa, A. S., Daffertshofer, A,
Twisk, J. W. R., Meskers, C. G. M., van Wegen, E. E. H, &
Kwakkel, G. (2020). Is resting-state EEG longitudinally associ-
ated with recovery of clinical neurological impairments early


https://doi.org/10.1109/ISCIT.2012.6380841
https://doi.org/10.1109/ISCIT.2012.6380841
https://doi.org/10.1002/0471725250
https://doi.org/10.1002/0471725250
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1111/ejn.13787
https://doi.org/10.1111/ejn.13787
https://www.mathworks.com/matlabcentral/fileexchange/45867-community-detection-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/45867-community-detection-toolbox
https://www.mathworks.com/matlabcentral/fileexchange/45867-community-detection-toolbox
https://doi.org/10.1016/j.neurobiolaging.2018.05.018
https://doi.org/10.1016/j.neurobiolaging.2018.05.018
https://doi.org/10.1016/j.neuron.2015.06.037
https://doi.org/10.1016/j.neuron.2015.06.037
https://doi.org/10.1016/j.neuroimage.2009.11.020
https://doi.org/10.1016/j.neuroimage.2009.11.020
https://doi.org/10.1093/cercor/bhw089
https://doi.org/10.1093/cercor/bhw089
https://doi.org/10.1016/j.neuron.2020.05.007
https://doi.org/10.1016/j.neuroimage.2019.116157
https://doi.org/10.1016/0028-3932(71)90067-4
https://doi.org/10.1016/j.bspc.2020.101891
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://www.ncbi.nlm.nih.gov/pubmed/10576479
http://www.ncbi.nlm.nih.gov/pubmed/10576479
https://doi.org/10.1016/S1388-2457(99)00141-8
https://doi.org/10.1016/j.neuron.2017.08.002
https://doi.org/10.1016/j.neuron.2017.08.002
https://doi.org/10.1007/s10334-018-00732-0
https://doi.org/10.1007/s10334-018-00732-0
https://doi.org/10.1016/j.neuroimage.2020.117091
https://doi.org/10.1016/j.neuroimage.2020.117091
https://doi.org/10.1002/hbm.25013
https://doi.org/10.1093/cercor/bhq140
https://doi.org/10.1093/cercor/bhq140
https://doi.org/10.1016/j.neuropsychologia.2018.07.006
https://doi.org/10.1002/hbm.25313

= | wiLEy_ N

HOMMELSEN ET AL.

poststroke? A prospective cohort study. Neurorehabilitation
and Neural Repair, 34(5), 389-402. https://doi.org/10.1177/
1545968320905797

Schrouff, J., & Mourao-Miranda, J. (2018). Interpreting weight
maps in terms of cognitive or clinical neuroscience: Nonsense?
2018 International Workshop on Pattern Recognition in
Neuroimaging (PRNI), 1-4. https://doi.org/10.1109/PRNI1.2018.
8423944

Smit, C. M., Wright, M. J., Hansell, N. K., Geffen, G. M., &
Martin, N. G. (2006). Genetic variation of individual alpha fre-
quency (IAF) and alpha power in a large adolescent twin sam-
ple. International Journal of Psychophysiology, 61(2), 235-243.
https://doi.org/10.1016/j.ijpsycho.2005.10.004

Smit, D. J. A., Posthuma, D., Boomsma, D. I., & de Geus, E. J. C.
(2005). Heritability of background EEG across the power spec-
trum. Psychophysiology, 42(6), 691-697. https://doi.org/10.
1111/j.1469-8986.2005.00352.x

Valizadeh, S. A., Riener, R., Elmer, S., & Jincke, L. (2019).
Decrypting the electrophysiological individuality of the human
brain: Identification of individuals based on resting-state EEG
activity. NeuroImage, 197(April), 470-481. https://doi.org/10.
1016/j.neuroimage.2019.04.005

Vallat, R. (2018). Pingouin: Statistics in Python. Journal of Open
Source Software, 3(31), 1026. https://doi.org/10.21105/joss.
01026

van Albada, S. J., Kerr, C. C., Chiang, A. K. I, Rennie, C. J., &
Robinson, P. A. (2010). Neurophysiological changes with age
probed by inverse modeling of EEG spectra. Clinical Neuro-
physiology, 121(1), 21-38. https://doi.org/10.1016/j.clinph.
2009.09.021

van den Heuvel, M. P., Mandl, R. C. W., Kahn, R. S., & Hulshoff
Pol, H. E. (2009). Functionally linked resting-state networks
reflect the underlying structural connectivity architecture of
the human brain. Human Brain Mapping, 30(10), 3127-3141.
https://doi.org/10.1002/hbm.20737

van der Vliet, R., Selles, R. W., Andrinopoulou, E. R., Nijland, R.,
Ribbers, G. M., Frens, M. A., Meskers, C., & Kwakkel, G.
(2020). Predicting upper limb motor impairment recovery after
stroke: A mixture model. Annals of Neurology, 87(3), 383-393.
https://doi.org/10.1002/ana.25679

Varoquaux, G., Raamana, P. R.,, Engemann, D. A., Hoyos-
Idrobo, A., Schwartz, Y., & Thirion, B. (2017). Assessing and
tuning brain decoders: Cross-validation, caveats, and guide-
lines. NeuroImage, 145(August 2015), 166-179. https://doi.org/
10.1016/j.neuroimage.2016.10.038

Vecchio, F., Babiloni, C., Lizio, R., de Vico Fallani, F.,
Blinowska, K., Verrienti, G., Frisoni, G., & Rossini, P. M.
(2013). Resting state cortical EEG rhythms in Alzheimers dis-
ease: Toward EEG markers for clinical applications: A review.

In Supplements to clinical neurophysiology (1st ed., Vol. 62).
Elsevier B.V. https://doi.org/10.1016/B978-0-7020-5307-8.
00015-6

Voytek, B., Kramer, M. A., Case, J., Lepage, K. Q., Tempesta, Z. R.,
Knight, R. T., & Gazzaley, A. (2015). Age-related changes in
1/f neural electrophysiological noise. Journal of Neuroscience,
35(38), 13257-13265. https://doi.org/10.1523/jneurosci.2332-
14.2015

Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and
validation of brief measures of positive and negative affect: The
PANAS scales. Journal of Personality and Social Psychology,
54(6), 1063-1070. https://doi.org/10.1037/0022-3514.54.6.1063

Winkler, I., Debener, S., Muller, K. R., & Tangermann, M. (2015).
On the influence of high-pass filtering on ICA-based artifact
reduction in EEG-ERP. Proceedings of the Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society, EMBS, 2015(Novem), 4101-4105. https://doi.org/10.
1109/EMBC.2015.7319296

Woo, C.-W., Chang, L. J,, Lindquist, M. A., & Wager, T. D. (2017).
Building better biomarkers: Brain models in translational neu-
roimaging. Nature Neuroscience Reviews, 20(3), 365-377.
https://doi.org/10.1038/nn.4478

‘Wu, J., Quinlan, E. B., Dodakian, L., McKenzie, A., Kathuria, N.,
Zhou, R. J., Augsburger, R., See, J., Le, V. H,, Srinivasan, R., &
Cramer, S. C. (2015). Connectivity measures are robust bio-
markers of cortical function and plasticity after stroke. Brain,
138(8), 1-11. https://doi.org/10.1093/brain/awv156

‘Wu, J., Srinivasan, R., Quinlan, E. B., Solodkin, A., Small, S. L., &
Cramer, S. C. (2016). Utility of EEG measures of brain func-
tion in patients with acute stroke. Journal of Neurophysiology,
115(5), 2399-2405. https://doi.org/10.1152/jn.00978.2015

Xu, H., & Mannor, S. (2012). Robustness and generalization.
Machine Learning, 86(3), 391-423. https://doi.org/10.1007/
$10994-011-5268-1

SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

How to cite this article: Hommelsen, M.,
Viswanathan, S., & Daun, S. (2022). Robustness of
individualized inferences from longitudinal resting
state EEG dynamics. European Journal of
Neuroscience, 56(1), 3613-3644. https://doi.org/10.

1111/ejn.15673



https://doi.org/10.1177/1545968320905797
https://doi.org/10.1177/1545968320905797
https://doi.org/10.1109/PRNI.2018.8423944
https://doi.org/10.1109/PRNI.2018.8423944
https://doi.org/10.1016/j.ijpsycho.2005.10.004
https://doi.org/10.1111/j.1469-8986.2005.00352.x
https://doi.org/10.1111/j.1469-8986.2005.00352.x
https://doi.org/10.1016/j.neuroimage.2019.04.005
https://doi.org/10.1016/j.neuroimage.2019.04.005
https://doi.org/10.21105/joss.01026
https://doi.org/10.21105/joss.01026
https://doi.org/10.1016/j.clinph.2009.09.021
https://doi.org/10.1016/j.clinph.2009.09.021
https://doi.org/10.1002/hbm.20737
https://doi.org/10.1002/ana.25679
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1016/B978-0-7020-5307-8.00015-6
https://doi.org/10.1016/B978-0-7020-5307-8.00015-6
https://doi.org/10.1523/jneurosci.2332-14.2015
https://doi.org/10.1523/jneurosci.2332-14.2015
https://doi.org/10.1037/0022-3514.54.6.1063
https://doi.org/10.1109/EMBC.2015.7319296
https://doi.org/10.1109/EMBC.2015.7319296
https://doi.org/10.1038/nn.4478
https://doi.org/10.1093/brain/awv156
https://doi.org/10.1152/jn.00978.2015
https://doi.org/10.1007/s10994-011-5268-1
https://doi.org/10.1007/s10994-011-5268-1
https://doi.org/10.1111/ejn.15673
https://doi.org/10.1111/ejn.15673

HOMMELSEN ET AL.

APPENDIX A

EJ N European Journal of Neuroscience FENS

TABLE A1 Identification accuracies in different experimental states reported as mean % (SD)

States

RS1 (N =24)

RS1 (N =18)

RS2 (N = 24)
TapWait (N = 18)
SeqWait (N = 18)
TapMov (N = 18)
SeqMov (N = 18)

WILEYL

Type

CcvV 1-day 2-day 3-day
99.98 (0.04) 92.10 (6.84) 95.93 (3.63) 97.39 (2.65)
99.98 (0.06) 92.79 (6.76) 96.61 (3.30) 97.53 (2.51)
99.99 (0.04) 91.58 (7.49) 95.86 (4.18) 96.99 (3.50)
99.99 (0.02) 92.58 (6.39) 96.36 (3.42) 97.60 (2.77)
99.99 (0.02) 93.67 (7.35) 97.12 (4.36) 98.03 (3.80)
99.94 (0.12) 92.39 (6.72) 96.12 (3.34) 97.29 (2.41)

100.00 (0.00) 93.47 (8.41) 96.67 (4.64) 97.95 (2.99)

Note: All values were significantly above random chance (50%) (see Table S1).

TABLE A2 Identification accuracies for RS1 with mono-band and mono-location feature subsets reported as mean % (SD)

Subset (N = 24)
Bs
By

LPO

Note: All values were significantly above random chance (50%) (see Table S2).

RS1 vs. (N =18)
TapWait
SeqWait
TapMov

Type
Ccv 1-day 2-day 3-day
96.10 (2.54) 64.66 (7.92) 67.87 (8.12) 70.12 (8.01)
97.63 (1.52) 76.99 (7.69) 81.76 (7.11) 83.70 (6.94)
98.51 (1.17) 84.20 (7.74) 88.38 (6.34) 89.59 (5.67)
99.65 (0.57) 81.41 (10.44) 87.03 (9.03) 88.92 (8.14)
99.74 (0.30) 76.37 (9.98) 83.22 (9.00) 86.66 (7.96)
98.01 (1.80) 82.68 (8.89) 87.30 (7.45) 88.87 (6.56)
98.54 (1.55) 86.93 (9.38) 90.39 (7.45) 91.76 (6.12)
97.94 (1.78) 85.28 (8.57) 89.43 (7.30) 90.37 (6.52)
97.96 (2.02) 81.02 (8.32) 86.47 (7.35) 87.97 (7.06)
TABLE A3 Classification accuracy of RS1 versus task state (binary, within-subject) reported as mean % (SD)
Type
CV 1-day 2-day 3-day
88.35 (5.66) 62.91 (6.44) 66.26 (8.69) 67.28 (9.11)
95.12 (3.74) 67.79 (8.53) 73.05 (11.01) 74.86 (11.37)
93.56 (4.12) 79.04 (7.17) 82.75 (5.99) 84.18 (5.92)
97.81 (1.76) 88.77 (5.21) 92.81 (3.43) 93.32 (3.77)

SeqMov

Note: All values were significantly above random chance (50%) (see Table S3).
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TABLE A4 Accuracy of cross-task RSIIP — XIq identification reported as mean % (SD)
Type
Test states (N = 18) 1-day 2-day 3-day
TapWait 91.90 (6.46) 95.84 (3.30) 96.90 (2.44)
SeqWait 90.81 (7.09) 94.95 (4.39) 96.09 (3.40)
TapMov 88.79 (7.57) 93.02 (5.49) 94.01 (4.51)
SeqMov 83.85 (10.35) 88.39 (9.28) 90.03 (8.87)

Note: All values were significantly above random chance (50%) (see Table S4).
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